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Abstract 
 
Since Hurricane Katrina, extensive studies have been conducted aiming to optimize 

transit vehicle routing in an emergency evacuation. However, the vast majority of the 

studies focus on solving the deterministic vehicle routing problem, in which all 

evacuation data are known in advance.  These studies are generally not practical in 

dealing with real-world problems that involve considerable uncertainty in the evacuation 

data set.  In this project, a SmartEvac system is developed for dynamic vehicle routing 

optimization in an emergency evacuation.  The SmartEvac system is capable of 

processing dynamic evacuation data—such as random pickup requests, travel time 

change, and network interruptions—in real time.  The objective is to minimize the total 

travel time for all transit vehicles. 

A column generation based online optimization model is integrated into the SmartEvac 

system.  The optimization model is based on two structures:  a master problem model and 

a sub-problem model.  The master problem model is used for route selection from a 

restricted routes set, while the sub-problem model is developed to progressively add new 

routes into the restricted routes set.  The sub-problem is formulated as a shortest path 

problem with capacity constraints and is solved using a cycle elimination algorithm.  

When the evacuation data are updated, the SmartEvac system will reformulate the 

optimization model and generate new routes set based on the existing routes set.  The 

computational results on benchmark problems are compared to the results from other 

studies in the literature.  The SmartEvac system outperforms the other approaches on 

most of the benchmark problems in terms of computation time and solution quality. 



 
 

CORSIM simulation is used as a test bed for the SmartEvac system.  CORSIM Run-

Time-Extension is developed for communications between the simulation and the 

SmartEvac system. A case study of the Hurricane Gustav emergency evacuation is 

conducted, where different scenarios corresponding to the different situations that 

happened in the Hurricane Gustav emergency evacuation are proposed to evaluate the 

performance of the SmartEvac system in response to real-time data.  The average 

processing time is 28.9 seconds, and the maximum processing time is 171 seconds, which 

demonstrates the SmartEvac system’s capability of real-time vehicle routing optimization 

on an Intel Core I5 Laptop.  The dynamic vehicle routing optimization model is deployed 

and implemented to a web-based online service system to allow transit agencies or 

drivers to exchange necessary data. 
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Real-Time Transit Vehicle Routing Optimization in 
Intermodal Emergency Evacuations 
 

INTRODUCTION 
 

In 2005, transit could have played an important role by assisting in the evacuation of an 

estimated 150 to 200 vulnerable residents in the Gulf Coast region who lacked access to a 

private vehicle during Hurricane Katrina.  In response to the lessons learned from 

Hurricane Katrina, transit agencies are taking more active procedures in the evacuation of 

transit-dependent populations.   

The Federal Transit Administration has established the Advanced Public Transportation 

Systems (APTS) program to encourage development and implementation of innovative 

technologies and strategies to improve transit service. Transit agencies across the 

nation—including APTS in Los Angeles, the Regional Transportation District (RTD) in 

Denver, the Milwaukee County Department of Public Works Transportation Division 

(MCTD), the Kansas City Area Transportation Authority (KCTA), the Maryland’s Mass 

Transit Administration (MTA), and the Dallas Area Rapid Transit (DART)—are 

implementing the Automatic Vehicle Location (AVL) system to monitor both the 

location and performance of transit vehicles.   

The AVL system could be further develop for transit emergency evacuation plans; 

register transit-dependent populations; identify the maximum number of transit-

dependent populations; consider school buses and drivers for meeting the surge demands 

of emergency evacuation; develop a plan especially for evacuating people with special 

needs (e.g., the disabled, the elderly); develop standby emergency service contracts to fill 

remaining transit service gaps; build real time communication between transit drivers and 

emergency managers, as well as the public; and coordinate with state and local 

departments of transportation to provide dedicated lanes to facilitate transit trips in an 

emergency evacuation (White, 2008).  

In a US DOT study to evaluate the evacuation plans in the Gulf Coast region, many 

factors limit the role of transit.  Firstly, the damage to the transportation system, which 
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includes major bridge damage, would seriously impede the progress of the transit 

evacuation.  Another limit comes from the congestions at peak periods during the 

workday.  The last limit would be the unpredictability of evacuation data.  Even for a 

hurricane emergency evacuation with advance notice, when the hurricane will make 

landfall and what its path will be remain uncertain in the planning stage.  The number of 

evacuees may be very significantly dependent on the size and severity of the hurricane as 

well.  

Taking these factors into consideration, an approach to consider for transit operations in 

emergency scenarios is the Capacitated Dynamic Vehicle Routing Problem with Pickup 

and Delivery (CDVRPPD), which is an extension of the Vehicle Routing Problem (VRP). 

The CDVRPPD involves solving the vehicle routing problem with pickup and delivery in 

a real-time environment.  The SmartEvac system is developed based on CDVRPPD.  It 

takes real-time evacuation data available to the transit agencies and uses this data to 

output vehicle routes and pickup locations in an emergency evacuation.  The SmartEvac 

system contains several real-time routing features, including real-time evacuation data 

collection and processing, demand-responsive transit vehicle routing and scheduling, and 

real-time response to transportation network interruptions.  

The SmartEvac is a real-time transit evaluation system that can be adopted for emergency 

evacuations of mid-size cities.  The system is designed to support an effective delivery of 

transit service.  The SmartEvac system focuses on optimizing fleet planning, scheduling, 

and operations.  Approved transit agencies will be able to access the supporting tools at 

any time, as long as they are connected to the Internet.  Real time traffic information and 

evacuee information can be used and updated to generate the routing plan. In order to 

improve transit route running times, a CDVRPPD model is implemented in the 

SmartEvac system to optimize the total travel time.  The CDVRPPD model is based on a 

master problem–sub-problem structure.  The master problem is formulated as a Set 

Covering (SC) model that is used for routes selection from a restricted routes set.  The 

sub-problem is formulated as an Elementary Shortest Path Problem with Capacity 

Constraint (ESPPCC) model that progressively adds new routes into the restricted routes 

set.  The SmartEvac system is validated through a case study of the Hurricane Gustav 
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evacuation procedures in Gulfport, MS.  A CORSIM simulation is conducted as a proof-

of-concept to demonstrate the SmartEvac system’s feasibility in a dynamic environment.  

CORSIM Run-Time-Extension (RTE) is developed as a communication interface that 

enables a data exchange between CORSIM simulation and the SmartEvac system.  

Different scenarios corresponding to the different situations that happened in the 

Hurricane Gustav emergency evacuation are proposed to evaluate the performance of the 

SmartEvac system in response to real-time data.  Furthermore, the SmartEvac system 

could increase operating efficiency, service reliability, and resilience of transit service in 

an emergency; and improve response to surge demands and service disruptions.  Overall, 

the SmartEvac system would improve the efficiency and safety of the transit service, 

which would lead to a successful emergency evacuation. 

To consider the real world actual requirements, the SmartEvac system would provide 

remote functions to web-based service.  The transit agencies have access to upload traffic 

input data or download an optimized routing plan from a website/web-based application.  

The optimized routing plan (once approved by the manager) will be sent to the transit 

driver’s smart phones with Google Navigation.  First, the web service will be designated 

to support the transit operations in small cities in Mississippi.  After a period of test runs 

and updates in the future, the service could be introduced to a wide range of small to 

medium cities throughout the United States. To achieve the web-based design, the 

SmartEvac system would provide an Application Programming Interface (API) for 

portions of data exchange, as well as the ability to deploy web servers to popular web 

services (Apache, IIS, etc.). 
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LITERATURE REVIEW 
 

In this section, comprehensive literature reviews of existing evacuation modeling, vehicle 

routing optimization models, and solution algorithms are conducted.  In addition, state-

of-the-art transit systems in intermodal transportation and their implementation in 

emergency evacuation are presented.  

 

Evacuation Modeling 

 

Transit evacuation is playing an increasingly important role following the strikes of 

severe hurricanes such as Hurricanes Katrina and Rita in 2005, and more recently, 

Hurricane Sandy in 2012.  To protect the general public from disaster, it is necessary to 

develop more advanced evacuation models for evaluating or optimizing transit 

evacuation operations.  Most studies on transit evacuation operations focus on two types 

of off-line models:  simulation models and optimization models.  Simulation models are 

categorized into three groups:  microscopic, macroscopic, and mesoscopic, depending on 

the level of detail at which the traffic information is described.  Simulation models allow 

evacuation managers to develop and compare different evacuation plans for different 

hypothetical emergency scenarios (Yuan et al., 2006). 

 

Macroscopic Simulation Model 

 

Macroscopic simulation models consider traffic flow as composed of platoons of 

vehicles—i.e. vehicles with common characteristics are treated as a homogeneous group.  

They are mainly developed for evacuation planning purposes. Most macroscopic 

simulation models are based on a dynamic network flow approach (Sheffi et al., 1982; 

KLD, 1984; Hobeika and Jamei, 1985; Hobeika and Kim, 1998).  In the context of 

emergency evacuation, macroscopic simulation models have uses such as analyzing 

traffic conditions, estimating evacuation times, and generating optimal evacuation routes. 
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NETVAC (Network Emergency Evacuation), developed by Sheffi et al. (1982), is 

considered to be the first evacuation planning simulation model.  NETVAC is used for 

simulating traffic flow patterns and estimating clearance times during emergency 

evacuations. NETVAC allows the analyst to customize the degree of driver compliance 

on an intersection specific basis under evacuation conditions.  NETVAC also supports 

dynamic route selection by dynamically adjusting the turning movements at each 

simulation interval according to the traffic conditions.  However, this model was 

specifically designed for nuclear plant accident evacuation, which means the evacuation 

starts from a single point, and thus all the movements are directed radially outward from 

the single point, rather than in a more general direction as with hurricane evacuations. 

 

HURREVAC (Hurricane Evacuation) (FEMA, 2013) is a storm tracking and decision 

support tool developed specifically for hurricane evacuation.  HURREVAC combines the 

National Hurricane Center's Forecast Advisories with data from various state HES’s 

(Hurricane Evacuation Studies) to estimate the time required to evacuate an area, which 

assists the local emergency management agency in determining the most appropriate 

evacuation decision time. 

 

VISUM is a macroscopic simulation software system for traffic analyses.  It is used to 

simulate evacuation plans (Schomborg et al., 2011; ARCADIS, 2011; ARCADIS, 2012), 

especially when the maximum evacuation time is required.  ARCADIS Inc. (2011, 2012) 

performed VISUM simulations to forecast evacuation times in different scenarios.  The 

VISUM network includes designated evacuation routes, as well as backup routes, to 

accurately reflect the traffic conditions during an evacuation.  The potential impacts of 

the population growth on evacuation time were also analyzed. 

 

Perkins et al. (2001) developed several models for hurricane evacuation planning to 

mitigate traffic congestion in North Carolina.  Those models were used to determine total 

evacuation time, identify traffic bottlenecks, and assess traffic operation strategies. They 

also worked on the application of public transit in short-notice evacuation.  An 

evacuation methodology which was specific to hurricane evacuation was developed to 
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determine the scheduling of buses to evacuate the elderly and disabled citizens in North 

Carolina’s small urban and rural areas.  They assumed that buses were located at a single 

depot prior to evacuation. Each bus was assigned a location where it loaded the evacuees 

and proceeded to follow a predetermined route to reach the safe locations. 

 

Microscopic Simulation Model 

 

Microscopic simulation models focus on the modeling of individual vehicle behaviors 

and interactions among vehicles.  Microscopic simulation models are generally based on 

car-following models.  They are often used for modeling traffic with complex behavior in 

an emergency evacuation, such as contra-flow (Lim, 2003), traffic signal preemption 

(Zhang, 2009), and transit operations (Wen, 2012).  Microscopic models are usually 

resource intensive, and thus, are only implemented in small networks. 

 

CORSIM (Corridor Simulation) (McTrans, 2014) is a microscopic traffic simulation 

software package for simulating urban street and freeway traffic systems.  It is an 

integration of two separate microscopic simulation models, NETSIM (Network 

Simulation) for modeling surface streets, and FRESIM (Freeway Simulation) for 

modeling freeways.  NETSIM, which is the successor of UTCS-I (Urban Traffic Control 

System) in the 1970s, keeps track of each individual vehicle, including detailed 

characteristics relating to the vehicle within more complex urban networks.  NETSIM 

provides simulation results in a more aggregated level.  Lim (2003) and Theodoulou et al. 

(2004) utilized CORSIM to simulate hurricane evacuation with contra-flow strategy.  Zou 

et al. (2005) applied CORSIM simulation technology to evaluate six plans for hurricane 

evacuations in Ocean City.  Tagliaferri (2005) performed both CORSIM and VISSIM 

simulations to investigate the effects of the lane reversal plan on hurricane emergency 

evacuations.  ORNL (Oak Ridge National Laboratory) (Bhaduri et al., 2006) developed 

OREMS (Oak Ridge Evacuation Modeling System), which is an integration of a 

CORSIM simulation model and a GIS model, to analyze and evaluate large-scale 

emergency evacuations, conduct evacuation time estimation, and develop evacuation 

plans.  Zhang et al. (2009) proposed a CORSIM model for simulating emergency vehicle 
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operations—including traffic signal preemption and movement on shoulder and red 

lights—in a hurricane evacuation.  NETSIM is also capable of modeling transit 

operations. The impacts of transit signal priority and connected vehicles on transit 

emergency evacuations were also investigated.  Wen et al. (2012) used CORSIM 

simulation with RTE to simulate transit signal priority and connected vehicles within a 

large network with over 150 signalized intersections.  

 

Mesoscopic Simulation Model 

 

Mesoscopic simulation models compromise between microscopic and macroscopic 

simulation models.  They simulate individual vehicles with a high level of detail, but 

describe their activities and interactions based on aggregate relationships.  The 

aggregation mitigates calculative burden and lessens computation time.  Typical 

applications of mesoscopic simulation models in the context of emergency evacuation are 

reviewed as follows. 

 

Dynasmart-P (Dynamic Network Assignment-Simulation Model for Advanced Roadway 

Telematics - Planning version), which is the planning version of Dynasmart (Mahmassani 

et al., 1994), utilizes mesoscopic models to represent traffic interactions.  Dynasmart-P 

supports transportation network planning and operation analyses with a simulation-based 

dynamic traffic assignment.  It is capable of handling a large-scale urban traffic network 

with up to 89,999 nodes (Mahmassani et al., 2004).  In recent years, it has been enhanced 

to evaluate incident management strategies (Kwon, 2004; Yuan et al., 2006; Naser and 

Shawn, 2010).  Kwon (2004) used Dynasmart-P simulations to evaluate emergency 

evacuation strategies on a large-scale network. Dynasmart-P simulations were developed 

for a hypothetical emergency evacuation in downtown Minneapolis, Minnesota.  The 

model was calibrated using loop detection data.  Alternative emergency evacuation 

strategies in terms of different network configurations were proposed and evaluated; 

however, the assumption that all drivers are aware of the network configuration changes 

and can adjust their routes accordingly is not realistic under actual emergencies.  Naser 

and Shawn (2010) developed a Dynasmart-P application integrated with Cube-Voyager 
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software (Citilabs, 2013), which provided an OD matrix for Dynasmart-P, to model flood 

evacuation at regional level.  Different hypothetical emergency scenarios with varying 

flood locations, levels, and warning times were modeled using the Fargo-Moorhead 

metropolitan area data.  Traffic controls were modified to facilitate the evacuation 

operations.  The outputs of the Dynasmart-P simulation were used to estimate the 

evacuation time, measure the effectiveness of the modified traffic control, and evaluate 

the system parameters such as driver compliance and trip loading rate.  

 

DynusT (Chiu et al., 2010) is another version of Dynasmart developed for real-time 

analysis that has been implemented in various evacuation studies (Chiu et al., 2008; 

Zhang et al., 2009; Zheng et al., 2010; Songchitruksa et al., 2012).  Chiu et al. (2008) 

deployed and assessed the contra-flow operation in the Central Texas Evacuation 

network (CTE) in DynusT.  The simulation results indicated that the contra-flow 

operation led to about a 14% travel time savings for all evacuees.  Songchitruksa et al. 

(2012) created DynusT simulations for assessing the performance of alternative 

evacuation strategies, including partial contra-flow, as well as an “evaculane”, in which 

evacuation traffic could use the outside paved shoulder as an additional traveling lane 

during an emergency evacuation, in the context of a hurricane evacuation in Houston, 

TX.  Results indicated that the “evaculanes” on I-10 and US-290 could provide sufficient 

capacity to handle high evacuation demand on both routes without the contra-flow 

operation.  In addition, the contra-flow plan for I-45 was proved adequate in handling 

high evacuation demand in lieu of fully implemented contra-flow operation.  Wang et al. 

(2014) incorporated contra-flow with VMS (Variable Message Signs) in a hypothetical 

emergency evacuation.  DynasT simulations were developed to evaluate the performance 

of the strategies.  The simulation results demonstrated that the combination of contra-

flow and VMS improved the evacuation performance more effectively than using only 

one or none of the two strategies. 
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Vehicle Routing Problem 

 

The vehicle routing problem (VRP) was first introduced by Dantzig and Ramser (1959) 

as a generalization of the well-known “traveling salesman problem.”  The VRP involves 

finding a set of optimal routes for a fleet of vehicles to service a set of customers 

subjected to certain constraints.  The classical VRP and its variants—such as the 

Capacitated Vehicle Routing Problem (CVRP), the VRP with time windows (VRPTW), 

and the VRP with Pickup and Delivery (VRPPD)—have been extensively studied for 

over 50 years.  Current exact algorithms are able to solve the CVRP with a size limit of 

50–100 customers depending on the customers’ distribution and the response time 

requirement.  However, in terms of the dynamic vehicle routing problem, most studies 

focus on heuristic algorithms, and no existing exact algorithms have been successfully 

applied to the vehicle routing problem in a transit emergency evacuation. 

 

Exact Algorithms 

 

Exact algorithms to solve the VRP include the branch-and-bound, the cutting plane, 

column generation, and the branch-and-price algorithms.  A brief review of each of the 

exact algorithms is provided in this section. 

 

The column generation algorithm is an efficient algorithm for solving large-scale linear 

programs.  It has been widely applied to the VRP and its variants by many researchers.  

Agarwal et al. (1989), Hadjiconstantinou et al. (1995), and Bixby (1998) developed 

column generation algorithms for general VRP.  Desrochers et al. (1992) applied a 

column generation algorithm on the VRPTW.  Jin et al. (2008) proposed a column 

generation approach to solve the VRP with split delivery (VRPSD). The basic idea of 

column generation is to iteratively generate a subset of columns and push them into the 

basis such that the inclusion potentially improves the objective function.  The column 

generation algorithm can be combined with the branch-and-bound algorithm, also called 

the branch-and-price algorithm.  The branching occurs when no columns can enter the 

basis, and the solution to the linear program is not an integer.  
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Desrochers et al. (1992) presented a dynamic programming-based optimization algorithm 

for the VRPTW.  The VRPTW is formulated by a Set Covering (SC) form in which the 

path does not have to be elementary.  The LP relaxation of the SC model is solved by 

column generation.  The pricing sub-problem, which is the Shortest Path Problem with 

Resource Constraints (SPPRC), is solved through a label correcting algorithm in which 

labels are created through a “pulling” process.  Two sets of labels were generated for the 

states at each node.  The first set of labels provides an upper bound, while the second set 

of labels relates to a lower bound on the cost of a path associated with a state at each 

node.  The algorithm computes the cost associated with a state at a node by progressive 

refinement of lower and upper bounds on its value.  In addition, a 2-cycle elimination 

procedure was accomplished by a duplication of the labels.  This procedure could tighten 

the relaxed state space by eliminating all cycles of length two.  The LP solution is then 

used in a branch-and-bound algorithm to solve the integer SC model.  The algorithm has 

a pseudo polynomial complexity. 

 

Feillet et al. (2004) proposed an exact algorithm for the Elementary Shortest Path 

Problem with Resource Constraint (ESPPRC).  The algorithm is adapted from Desrochers’ 

(1988) label correcting algorithm.  A new resource, which indicates if a label of a node is 

extendable to another node, is created to enforce the elementary path constraint, as 

proposed by Beasley and Christofides (1989).  The label correcting method is improved 

by introducing the new resource in the dominance rule.  This method could decrease the 

number of states to be explored, therefore reducing the computational complexity.  The 

drawback of the method is that the complexity is strongly related to the graph structure, 

the number of the nodes, and the tightness of resource constraints. 

 

Righini and Salani (2008) developed a label setting algorithm for the ESPPRC.  The 

traditional label setting algorithm is improved by two new methods.  The first method is a 

bi-directional search with resources bounding in which states are extended both forward 

from a start node to its successors and backward from a destination node to its 
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predecessors.  All the forward states and backward states at a node are then joined, 

subject to resource constraints, to make feasible routes.  Therefore, states are not 

extended if, at most, half of the available amount of resources has been used.  This 

method could effectively reduce the number of states in the solution space.  The second 

method is a combination of bi-directional search with state space relaxation.  In this 

algorithm, the state space is relaxed to allow cycles with length more than two.  The path 

found from the relaxed state space is guaranteed to be feasible with regards to the 

resource constraints, but it is not guaranteed to be elementary.  Righini and Salani also 

provided branch-and-bound strategies to eliminate cycles in order to solve the ESPPRC 

to optimality. 

 

The pricing sub-problem in the column generation scheme was also called the Traveling 

Salesman Problem with Profits (TSPP) by Feillet et al. (2005) in a comprehensive survey.  

TSPP is considered as a bi-criteria TSP with two opposite objectives:  to maximize the 

benefits collection at each vertex, which pushes the salesman to travel; and to minimize 

the travel cost, which prevents the salesman from traveling.  The two objects constitute 

the price of visiting a vertex.  Generally, TSPP is divided into three categories based on 

the way the two objectives are presented: (1) Profitable Tour Problem (PTP) by 

(Dell'Amico et al., 1995), in which both objectives are combined in the objective function; 

(2) Orienteering Problem (OP) by (Golden et al., 1987), in which the travel cost is 

formulated as a constraint; and (3) Prize-Collecting TSP (PCTSP) by (Balas, 1989), in 

which the profit is stated as a constraint.  Solution approaches for TSPP were 

summarized into three groups: (1) exact algorithms; (2) classical heuristics; and (3) meta-

heuristic procedures.  The performance and applicability of the approaches were 

identified for different TSPP applications. 

 

Liu and Lee (2003) considered stochastic customer demand and included inventory costs 

in the vehicle routing problem.  An initial solution was found by clustering the customers 

based on an increasing order of their marginal inventory costs.  For each cluster, the 

depot was located nearest to the center, and a travelling salesman problem was solved.  

Then, a hierarchical improvement method was used based on the moves, drops, and shifts 
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of the depot’s location.  Both routing and inventory costs were fully evaluated for 

possible moves; however, the procedure was much slower than nested methods used in 

route length estimation. 

 

Heuristics 

 

Goel and Gruhn (2005) worked on a real-life vehicle routing problem with randomly 

generated demands after the start of planning.  They considered a diversity of practical 

constraints, such as time window restrictions, a heterogeneous vehicle fleet, vehicle 

compatibility constraints, etc.  To cope with the complexities of the problem, they 

improved the Large Neighborhood Search method by using fast insertion methods as the 

search algorithm.  Two insertion methods were developed.  The first is a sequential 

insertion method in which unscheduled transportation requests were randomly chosen, 

and all feasible insertion possibilities were considered.  The second is an auction method 

in which the vehicles only considered were unscheduled transportation requests with low 

incremental costs.  The second method was used for the vehicle routing with time 

windows. 

 

Schwardt and Dethloff (2005) developed a variant of Kohonen’s algorithm to solve a 

deterministic, single-depot, capacitated multi-vehicle routing problem.  Kohonen’s 

algorithm was based on a neural network including two layers.  Weights, which were 

Euclidean distances between nodes and customer demands, were assigned to the links 

between the layers. The neural network used self-organization approaches to construct 

the vehicle mappings and simultaneously generate feasible solutions to the location-

routing problem. 

 

Dynamic Vehicle Routing 

 

Secomandi (2000) worked on a single-vehicle routing problem in which customers’ 

demands are uncertain and are assumed to follow certain distributions.  The problem was 

formulated as a stochastic shortest path problem (SSPP) in a discrete-time dynamic 
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system.  He developed two sets of algorithms based on Neuro-Dynamic Programming 

(NDP).  NDP is an emerging field of neural network application. Unlike traditional 

neural networks, where training data sets are a necessity before training starts, NDP 

creates the training data set while it is running.  Moreover, NDP trains data repeatedly 

throughout the optimization process by using linear training architecture.  The first set is 

called the optimistic approximate policy iteration (OAPI), in which the cost-to-go 

function is approximated by a linear equation with a vector of parameters.  At each time 

step, the training data set—which contains a certain number of possible solutions under 

current vehicles routing states and its corresponding cost-to-go values—is collected by 

simulation.  Then, a least-square fitting is performed on the training set in order to 

generate the parameters of the linear function for all possible solutions under current 

vehicles’ routing states.  Finally, the current vehicles’ states can be optimized and go to 

the next state by a greedy algorithm with respect to the approximated cost-to-go function 

under the current state.  The second set is called rollout policies (RP), which is a variant 

of OAPI.  RP sequentially adjusts the decisions under current vehicles routing states by 

employing the cyclic heuristic.  As opposed to the OAPI, RP approximates the cost-to-go 

function by a closed form function where the parameters of the form are trivially trained 

to be zero and one at each step. 

 

Afshar and Haghani (2008) developed a simulation-optimization framework to optimize 

evacuation operations.  The framework consists of two parts:  a traffic simulator and an 

optimization module.  The simple traffic simulation was programmed based on the Green 

shield’s model.  The traffic simulator provides time-varying link travel times for the 

optimization module and facilitates the performance measures calculation.  The 

optimization module simultaneously optimizes the total evacuees’ travel time and the 

network clearance time.  Two classes of modules in the optimization framework were 

proposed.  The first module, named “SPREAD”, was used to distribute transit vehicles’ 

departure over a long time to relieve congestion effects in the network.  The second 

module, named “SQUEEZE”, was used to consolidate the evacuees’ distribution along 

time intervals to minimize the last departure time.  Since these two objectives are 

contradictory, the system optimal solution seeks a trade-off between these two objectives. 
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Web-based Transit Service 

This section contains several widely studied and utilized trip planning systems.  The web-

based transit service architecture will be discussed in the next part of this section.  

Several online trip planning systems were developed and published up to twenty years 

ago.  In the research of Peng and Huang (2000), it was determined that an online trip 

planning system should include two different aspects:  information content and system 

functionality.  The information content contains basic information about service, static 

information for transit, trip planning information, and real-time information.  The system 

functionality includes information dissemination, interactive communication, and online 

transactions.  Many existing online trip planners focus on providing interactive static 

transit information.  Google Transit Trip Planner, which is based on the Google Maps 

platform, provides comprehensive and powerful functionalities that contain directions for 

travel, travel time, and transfer information.  Google also provides different mode options 

including bus, train, subway, and light rail.  The function allows the user to choose their 

favorite or most convenient transport methods.  Also, Google builds in three optimization 

models into their transit planning tool:  best route, fewer transfers, and less walking.  

Cherry et al. (2006) provided another transit online trip planner.  In their research and 

development, online trip planning could support three origin and destination selection 

methods:  typing in the text address, selecting landmarks, and clicking on locations on the 

map that corresponded with Google Maps functions.  Furthermore, a forward-searching 

algorithm was implemented and executed from the origin to destination, or alternately 

from destination back to the origin.  The animation of this online trip planner was 

integrated with commercial GIS software—ArcGIS and ArcIMS—which provided 

professional and accurate map information to users.  Some other online trip planning 

systems were discussed by Sun et al. (2011).  In their research, Sun et al. listed map-

based interactive online trip planning systems, which included South-East Wisconsin 

Transit Trip Planner, ATIS, Transport Direct in England, and ENOSIS.  All of the online 

trip planning systems are integrations of map information and transit optimization 

algorithms.  Also, Sun et al. discussed the architecture in the online trip planning system 

and suggested the use of Service-Oriented Architecture (SOA) for development web-
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based transit service.  Figure displays the typical structure of online trip planning 

service.  

 

Figure Online Transit Planning System Architecture 

Hoar (2008) and Brian et al. (2009) stated that their visualizing transit system used the 

same architecture for development.  SOA, which is a standard framework for integrating 

existing distributed resources, was to reuse the components (services) within the existing 

systems and provide interoperability among modules that were built with different nine 

programming tools or even across platforms.    

 

Transit in Intermodal Transportation 

In this section, the transit in intermodal transportation is discussed.  Several studies 

suggested that effective schedule coordination may significantly increase the 

attractiveness and productivity of linear intermodal transit systems (Chowdhury and 

Chien, 2000).  In their subsequent research, Chowdhury and Chien (2001) provide a 

model for coordinating a multimodal transit system.  They found that coordination is 

preferable if train and bus headways are large.  The assumptions of their optimization 

model considered locations of transit facilities, supplier side, demand side administration 

costs, vehicle maintenance costs, insurance costs, labor costs, energy consumption costs, 

bus arrivals, and the probability of a late vehicle arrival time.  The formulated total cost 

function was used when optimizing the transfer coordination.  The cost parameters 

contained supplier costs, user costs, wait costs, transfer costs, and in-vehicle costs.  The 

minimized two-stage procedure included Stage One, in which the optimal headways of 

all routes were determined without coordination; and Stage Two, in which train-bus 

coordination at all transfer stations were considered.  In Stage Two specifically, the 
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procedure for optimizing coordinated operations in intermodal systems is an integration 

of train-to-bus and bus-to-train demand, bus routes without coordination, and train 

transfer stations.  Furthermore, research by Chowdhury and Chien (2011) showed that 

decision variables in bus-train coordination could include bus size and slack time 

considering the synchronization of bus and train arrivals.  Overall, this direction of transit 

in intermodal transportation systems was minimizing total cost with/without coordination 

in two stages.  Other researchers (Graham et al, 2000 and Cassady et al 2004) focused on 

different directions of an intermodal transportation system.  In their intermodal 

coordination system, the intermodal facility model terminal performance had more 

proportion.  The coordination model of their studies paid more attention to cargo 

transportation than transit passenger transportation.  Another study by Chan (2010) 

proposed a two-stage model for carless evacuation.  This proposal included a location 

problem that aimed at congregating the carless at specific locations and a routing problem 

with the objective of picking up the carless from evacuation sites and delivering them to 

safe areas.  They explicitly considered the dynamic demand pattern of evacuees to pickup 

points, as well as multiple trips of buses from pickup points to shelters.  Yue Liu and Jie 

Yu (2011) reported in the transit-based evacuation; most of the studies have not 

integrated the dynamic processes of evacuee guidance (from buildings or parking lots to 

pickup points) and bus routing (from pickup points to shelters).  Their work was an 

integrated optimization model that is capable of coordinating the evacuee guidance and 

transit routing process seamlessly and simultaneously.  Their model was a two-stage 

model that was formulated as a combined vehicle routing and assignment problem, and it 

was solved by a two-stage Tabu-based heuristic to yield meta-optimal solutions.  The 

feasibility and applicability of the proposed model were illustrated with a numerical 

example solved to optimality.  Results showed that the proposed model can yield valid 

and detailed evacuee guiding and transit routing plans during the evacuation within a 

reasonable time window.  
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METHODOLOGY 
 

In this chapter, development of a Capacitated Dynamic Vehicle Routing Problem with 

Pickup and Delivery model in the context of an emergence evacuation is discussed.  

Solution approaches to the CDVRPPD model are presented. The computational results on 

benchmark problems are compared to the results from other studies in the literature. 

 

Problem Statement 
 

Given a transportation network in which emergency evacuation is carried out, the 

dispatching of transit services resembles the Capacitated Dynamic Vehicle Routing 

Problem with Pickup and Delivery.  The transit emergency evacuation process includes 

sending transit vehicles from the Coast Transit Authority (CTA) to the hurricane prone 

area to pick up evacuees, updating transit vehicle routes based on real-time evacuee and 

traffic information, and delivering evacuees to the designated shelters.  The evacuee and 

traffic information are dynamic in nature.  The CTA provides a dial-a-ride service that 

allows evacuees to call in requesting on-site pickup during the evacuation process.  The 

dispatcher has no knowledge of future pickup requests.  The information of a real-time 

pickup request, including its location and demand, become known from the moment it 

comes into the system.  From here, the problem is assigning the most appropriate vehicle 

to the new request.  Routes are formed before evacuation but updated dynamically in 

response to real-time information updates, including new pickup requests and travel time 

changes.  Comparing to the static vehicle routing problem in which demands are known 

before the evacuation, the dynamic feature gives more freedom to the evacuees while, at 

the same time, bringing more challenge to transit agencies. 

 

Model Development 
 

The problem described above can be formulated as a special case of Capacitated 

Dynamic Vehicle Routing Problem with Pickup and Delivery.  It consists of two types of 

problems:  a) A static CVRPPD (Capacitated Vehicle Routing Problem with Pickup and 
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Delivery) in the planning stage of an emergency evacuation; and b) A CDVRPPD after 

the emergency evacuation starts. 

 

Base Model 
 

In the planning stage of an emergency evacuation, pre-registered evacuees’ information, 

including their demands and locations, are known in advance.  Despite the dynamic 

factors, such as travel time fluctuations, the CVRPPD is assumed static in this stage.  The 

classical CVRPPD generalizes the traveling salesman problem; thus it is NP-hard.  The 

CVRPPD is defined on a directed graph G = (V, A), where V is the set of vertices, and A 

is the set of arcs.  S denotes the set of depots.  N denotes the set of pickup points and M 

denotes the set of shelters, both of which are considered as customers with pickup and 

delivery demands.  Therefore, the graph consists of N M S  vertices such that

V N M S . 

 

The set of arcs, A, represents direct connections among the vertices.  A non-negative cost 

cij is assigned to each arc ,i j A .  Arc cost cij generally represents the travel time 

going from vertex i to vertex j, which corresponds to the shortest path from vertex i to 

vertex j, and consequently the cost matrix satisfies the triangle inequality.  Satisfying the 

triangle inequality, ciz + czj ≥ cij for all , ,i j z V , implies that any removal of pickup 

requests from a feasible route will reduce the route cost, and any insertion of pickup 

requests to a feasible route will increase the routes cost.  Using self-loop is not allowed 

by imposing ,  for all iic i V .  The graph is directed with an asymmetric cost matrix.  

This is realistic, especially in the case of an emergency evacuation where outbound traffic 

is usually much heavier than inbound traffic. 

 

There are certain restrictions imposed on the graph as shown in Figure .  The 

restrictions are written in the form of i j , where i and j denote the nodes which 

constitute a restricted link.  For example, an S M  restriction indicates that a vehicle 

cannot travel from a depot to a shelter, which means that a route has to pass at least one 
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pickup point before ending at a shelter. Other restrictions—including M M , which 

denotes a vehicle cannot travel among shelters, M N , which denotes a vehicle cannot 

travel from a shelter to a pickup point, and N S , which denotes a vehicle cannot travel 

from a pickup point to a depot—are added according to real emergency evacuation 

situations.  These restrictions theoretically turn the network into an incomplete graph 

where some of the arcs are restricted.  These restrictions can be symbolized by assigning 

0 to the decision variables corresponding to the usage of the restricted arcs in the model. 

these restrictions are represented alternatively to impose a very large positive value to the 

travel cost on restricted arcs.  In this report, the latter is used because it is easier to 

implement. 

 

Each pickup point i, i N , has a deterministic non-negative demand di.  It is assumed 

that di is less than or equal to the vehicle capacity. If di is larger than the vehicle capacity, 

the pickup point i will be divided into multiple pickup points, which coincide with and 

have less demand than the vehicle capacity.  For depots and shelters, their demands are 

fictitiously set to 0. There is also a fixed service time cs associated with each pickup point 

i.  The service time represents the time needed for loading and unloading and is included 

in the travel cost cij associated with each arc.  Based on CTA’s experience, the service 

time at a pickup point is normally 2.5 minutes on average.  The capacity of each shelter is 

assumed to be unlimited, which conforms to the actual situation in the Mississippi Gulf 

Coast.  Therefore, any one of the shelters can accommodate all the evacuees in the 

network. 

 

A homogenous fleet of transit vehicles K with identical capacity Q services the pickup 

points and shelters.  The fleet size is infinite.  Q must be larger than or equal to the sum 

of all the demands on the route assigned to vehicle k. Overload is not permitted, and each 

pickup point is serviced exactly once.  The service includes scheduled pickup for 

registered evacuees, dial-a-ride to unregistered evacuees, and delivery to a designated 

shelter.  A precedence constraint which regulates that all the pickup points must be 

served before any shelter is imposed on the route.  The CVRPPD involves the design of a 
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set of minimum cost routes that originate at a depot in S and terminate at a shelter in M 

after picking up all the evacuees.  Practically, a vehicle does not have to be back to the 

depot immediately after its arrival at a shelter.  However, in order to form a complete 

route, a set of dummy arcs linking from the shelters to the depots with zero travel cost are 

introduced to replace the original arcs.  Then, each vehicle can go back to the depot after 

delivery at a shelter via the dummy link.  In this case, a directed cycle is associated with a 

vehicle route. 

 

 
Figure A Simple Representation of Vehicle Routes 

Figure  shows a sample of vehicle routes in the network.  The blue square denotes a 

depot.  A vehicle starts from the depot and then picks up evacuees at the pickup points, 

which are represented by the red dots.  After pickup, the vehicle will deliver the evacuees 

to a shelter, which is represented by the green triangle.  The black solid line with an 

arrow denotes the arc that forms a vehicle route.  The black dotted line with an arrow 

denotes the dummy link that connects a shelter to a depot. There is no cost associated 
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with a dummy link.  The red solid line with an arrow denotes the arc that is restricted in 

the model. 

 

For ease of reference, notations are summarized as follows.  Particularly, the set of depots, 

S, contains only one element since the scope of this study is to solve the CVRPPD with 

single depot. 

 

G = A graph represents the transportation network. 

V = Set of vertices in G. 

A = Set of arcs in G. 

M = Set of shelters, 1,2, ,M m,m, . 

N = 
Set of pickup points at the beginning of evacuation, 

1, 2, ,,,N m m m n . 

S = Set of depots of all vehicles, 0S . 

K = Set of a fleet of vehicles, 0,1,2, , ,K k, ,k, . 

ijc  = Travel cost, ,i j A . 

id  = Demand at pickup point i, i N . 
k
iu  = Vehicle k’s load after visiting pickup point i, ,  i N k K . 

Q = Vehicle capacity. 

 

The CVRPPD is mathematically formulated as an integer linear programming model by 

(3.1) – (3.12).  The set of decision variables is defined as k
ijx .  For each arc ,i j A , the 

integer variable k
ijx  indicates whether (i, j) is traversed by vehicle k in the solution.  

 

1,  if vehicle  travels directly from vertex  to vertex ,  
   ,  
0,  other

,  
wi e

,
s

 k
ij

k i j
i V j V i j k Kx  

 
\

min k
ij ij

k K i V j V i

z c x  (3.1) 
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i N j M

x k K  (3.5) 

 1,  ,k
ij

i M

x j S k K  (3.6) 

 0,  , ,k
ijx i S j M k K  (3.7) 

 0,  , ,k
ijx j S i N k K  (3.8) 

 0,  , ,k
ijx i M j N M k KM k, kk,  (3.9) 

 ,  , ,  ,  ,    k k k
i j ij j i ju u Qx Q d i j N i j k K such that d d Q  (3.10) 

 ,  ,  k
i id u Q i N k K  (3.11) 

 0,1 ,  , ,k
ijx i j V k K  (3.12) 

 

The objective function (3.1) is to minimize the total travel cost.  The in-degree constraints 

(3.2) ensure that each pickup point is visited once and only once.  Route continuity is 

enforced by the constraints (3.3), as once a vehicle arrives at a pickup point, it has to 

leave the pickup point.  The constraints (3.4), (3.5), and (3.6) indicate that each vehicle 

leaves an depot exactly once; after picking up all the evacuees on its route, it has to visit a 

shelter once and only once; and finally travels back to the depot, respectively.  The 

constraints (3.7), (3.8), and (3.9) are connectivity constraints indicating that the arcs from 

the a depot to a shelter, arcs from a shelter to a pickup point, arcs among shelters, and 

arcs from a pickup point to a depot are restricted, respectively.  The constraints (3.10) and 

(3.11) are called polynomial cardinality constraints (Christofides et al., 1979) that impose 
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both sub-tour elimination and the vehicle capacity requirements.  Constraints (3.12) are 

the integrality constraints. 

 

Column Generation Model 
 

In the base model, only the in-degree constraints (3.2) are correlated with the vehicles 

while the remaining constraints are associated with individual vehicles separately.  Since 

the number of constraints (3.3) – (3.12) is exponential, it is desirable to reformulate the 

integer program into another equivalent problem which is more manageable for the 

simplex method.  One of the most successful methods is Dantzig-Wolfe decomposition 

(1960) which breaks up the base model into a master problem and sub-problems. The 

decomposition actually decreases the number of constraints, but increases the number of 

variables exponentially.  For large scale IP, the decomposed model is too large to 

consider all the variables explicitly.  Since for the master program solved by the simplex 

algorithm, most columns are inactive at each step. In such a scheme, a column generation 

approach, which represents a generalized application of Dantzig-Wolfe decomposition, is 

proposed to solve large integer problems by working with only a subset of variables. 

 

Master Problem Model 
 

The column generation is based on a master problem and sub-problem structure.  The 

master problem is an integer problem which is usually relaxed to a linear problem that is 

easier to solve. 

 

For the CVRPPD problem defined through (3.1) – (3.12), the constraints (3.2) are 

considered to be the linking constraints in a Dantzig-Wolfe decomposition scheme, which 

connects the vehicle routes, while the remaining constraints (3.3) – (3.12) are associated 

with individual vehicle.  The constraints (3.3) – (3.12) define the domain of individual 

vehicle route generation, which is the sub-problem.  Let Rk be the set of feasible routes 

traveled by vehicle k, while r represents an elementary route in Rk.  Let k
ijrx be a binary 

variable defined as follows. 
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1,  if vehicle  travels directly from  to  on pa

0,  otherwise

th ,  
   ,  ,  ,  ,  k

ijr
k

k i j r
i V j V i j r R k Kx  

 

Each variable k
ijx  in the base model can be represented by a combination of k

ijrx .  The 

decision variable k
ijx  is rewritten by (3.13) – (3.15). 

 

 ,  ,  ,  
k

k k k
ij ijr r

r R

x x y k K i V j V  (3.13) 

 1,  
k

k
r

r R

y k K  (3.14) 

 0,1 ,  ,  k k
ry r R k K  (3.15) 

 

Where, k
ry  is binary variable that represents whether vehicle k travels on path r.  The cost 

of route r, k
rc , and the number of times a pickup point i is visited by vehicle k on route r, 

k
ira  are defined as, 

 

 
,

,  ,  k k k
r ij ijr

i j V

c c x r R k K  (3.16) 

 
\

,  ,  ,  r r k
ik ijk

j V i

a x r R k K i V  (3.17) 

 

Substitute k
ijx  and ijc  in (3.1) and (3.2) using (3.16) – (3.17).  The reformulated model is 

shown by (3.18) – (3.21). 
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k

k k
r r

k K r R

c y  (3.18) 

 1,  
k

k k
ir r

k K r R

a y i N  (3.19) 

 1,  
k

k
r

r R

y k K  (3.20) 

 0,1 ,  ,  k k
ry r R k K  (3.21) 

 

Since the fleet of vehicles is homogenous, the travel cost is only associated with the arc, 

such that k
r rc c  for all vehicle k.  The route sets kR R  for all vehicles k.  Therefore, it 

is possible to eliminate the index k by aggregating vehicle k’s parameters on route r.  The 

revised model is presented as follows. 

 

 : min r r
r R

MP c y  (3.22) 

 1,  ir r
r R

a y i N  (3.23) 

 0,1 ,  ry r R  (3.24) 

 

Now, equations (3.22) – (3.24) constitute the master problem of the SP model.  Notation 

ira  is binary variable that equals to 1 if vertex i is visited by route r and equals to 0 

otherwise.  Decision variable ry  is a binary variable that equals to 1 if route r is used in 

the optimum solution and equals to 0 otherwise.  Constraint (3.35) states that each pickup 

point i is covered by one and only one route r in the routes set R.  The master problem is 

usually relaxed to a Linear Master Problem (LMP) by replacing the integrality constraint 

(3.36) with 0 1 ,  ry r R .  The columns represented by the decision variables 

correspond to the feasible routes.  Since the number of columns, |R|, exponentially 

increases with the problem size, it is not practical to explicitly enumerate all feasible 
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routes and solve the master problem as an integer programming problem for all but very 

small sized problems.  For example, a network with n customers has theoretically e(n!) 

elementary routes when n is sufficiently large.  The appealing idea to overcome this 

difficulty is to work with only a small subset of variables first and then generate new 

variables as needed.  The master problem that considers only a subset of variables is so 

called Restricted Master Problem (RMP).  The linear relaxation of the RMP (LRMP) is 

represented by (3.25) – (3.28).  The special structure of the SP model results in a tighter 

linear programming relaxation than that of the arc-based CVRPPD model. 

 

 
'

: min r r
r R

LRMP c y  (3.25) 

 
'

1,  ir r
r R

a y i N  (3.26) 

 0 1 ,  'ry r R  (3.27) 

 'R R  (3.28) 

 

Where, 'R  is a subset of R.  The objective of the RMP is to find a set of optimum cost 

routes within 'R  to service the pickup points.  In the form of a linear relaxation of the 

RMP, each decision variable ,  'ry r R  represents the number of times the path r is 

used in the optimum solution.  The decision variable ry  is not necessarily an integer; it is 

actually possible for the decision variable to be any real number in the interval [0, 1]. 

 

Instead of the SP model, in which each pickup point is visited exactly once, Desrochers et 

al. (1992) presented a Set Covering (SC) model which no longer requires the routes in R 

to be elementary.  In the SC model, ira  represents the number of times a pickup point i is 

visited by route r.  It can take any positive integer values, not just a binary value.  

Therefore, a new constraint (3.29) is proposed to replace constraint (3.26). 
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'

1,  ir r
r R

a y i N  (3.29) 

 

Although the relaxation of (3.26) yields a weaker lower bound than that of the SP model 

because of the existence of non-elementary routes in R, the SC model is still more 

beneficial than the SP model.  First, the SC model is numerically more stable than the SP 

model especially in the environments involving many customers on the same route 

(Desrochers et al., 1992).  Second, the linear relaxation of the SC model is easier to solve 

than the SP model (Jin et al., 2008).  

 

The SC model described above is very general but can be easily extended to other 

CVRPPDs with variants, such as time windows or priority queues.  Constraints with 

regard to the special requirements are applied to the sub-problem to generate a feasible 

route.  

Since the number of all feasible routes in a CVRPPD instance increases exponentially 

with the problem size, explicitly enumerating all the feasible routes is not an option for a 

large size CVRPPD.  Therefore, the column generation based approach is applied to 

solve the problem.  One of the key steps in column generation is to design a sub-problem 

model for generating columns into R’ so that R’ is expanded progressively towards the 

optimum solution. 

 

Sub-Problem Model 
 

Every linear programming problem has an associated dual linear programming problem.  

For the CVRPPD, the LRMP is referred to as a primal problem.  Let 1 2 ', , ,r Ry y y y 'Ry,  

be the optimal solution to the LRMP.  It is necessary to identify whether yr is also an 

optimum solution to the LMP.  
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Let 1 2, , , n, n,  be the set of dual variables associated with (3.29) and 

1 2, , , n, n,  be the dual optimal solution with respect to yr.  The dual of the linear 

relaxation of the master problem (LMPD) is represented as follows. 

 

 : max i
i N

LMPD  (3.30) 

 ,  'ir i r
i N

a c r R  (3.31) 

 0,  i i N  (3.32) 

Clearly  satisfies constraints (3.31) for all 'r R .  Hence if we can prove that  

satisfies constraints (3.31) for all r R ,  is optimum for the LMPD and thus ry  is 

optimum for the LMP according to the duality theorem (Boyd et al., 2009).  Instead, if 

there is a route ,  r r R  that violates the constraints (3.31), the current  is not optimum 

for LMPD.  The corresponding route r, which causes the violation, can be added into 'R  

of the LRMP.  The LRMP is then solved again.  This process repeats until no route 

violating constraints (3.31) can be found (See Figure ).  At this point, the optimum 

solutions, y and , are found for the LMP and LMPD, respectively. 
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Figure Columns Set Augmentation 

Figure  illustrates the relationship between the LRMP and the LMP in terms of the 

number of columns.  The first row of Figure  shows the complete set of columns.  The 

rest of rows demonstrates how the columns set is augmented towards the optimum 

solution for each iteration of the column generation process.  

 

Let rc  be the reduced cost of a route r. rc  is formulated as follows. 

 ,  r r ir i
i N

c c a r R  (3.33) 

The sub-problem now is to find a feasible route r with negative rc .  The sub-problem 

must be able to efficiently price out all feasible routes, that is the reason it is usually 

called pricing problem.  Then, the sub-problem decomposes into n identical problems, 

each of which is an Elementary Shortest Path Problem with Capacity Constraint 

(ESPPCC) defined on the same graph as the master problem.  The ESPPCC model is 

formulated as follows. 

 
\

min ij ij
i V j V i

c z  (3.34) 
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 1ij
i M j S

z  (3.35) 

 1ij
i N j M

z  (3.36) 

 1ij
i S j N

z  (3.37) 

 0,  ,  ,  io oj
i V j V

z z o V o i o j  (3.38) 

 0,  ,ijz i S j M  (3.39) 

 0,  ,ijz i N j S  (3.40) 

 0,  ,ijz i M j N MM  (3.41) 

 ,  , ,  ,    i j ij j i ju u Qz Q d i j N i j such that d d Q  (3.42) 

 ,  i id u Q i N  (3.43) 

 0,1 ,  ,ijz i j V  (3.44) 

 

Where,  

ijc  = Cost of using arc (i, j), where 
2 2

ji
ij ijc c  

ijz  is the decision variable that represents flow in the network. 

1,  if arc ,  is used in the shortest path,  ,  ,
0,  otherwise

 
ijz

i j i V j V i j
 

 

The objective is to find the shortest path with a negative reduced cost that covers a subset 

of pickup points ',  'N N N .  Constraints (3.35) – (3.38) are flow conservation 

constraints.  Constraints (3.39) – (3.41) are connectivity constraints.  Constraints (3.42) – 
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(3.43) are the sub-tour elimination constraints, where iu  is the vehicle load after visiting 

pickup point i.  Constraint (3.44) ensures the integrality. 

 

Since the ESPPCC is NP-hard (Dror, 1994), allowing cycles on the shortest path by 

relaxing some of the constraints—which changes the ESPPCC to the non-elementary 

Shortest Path Problem with Capacity Constraint (SPPCC) (Desrosiers et al., 1992; Irnich 

and Villeneuve, 2006)—becomes imperative regarding the computational burden.  

However, allowing cycles on the shortest path will expand the columns set R and thus 

provide a weaker lower bound to the master problem.  Therefore, researchers focused on 

compromising between complexity and quality.  Beasley and Christofides (1989) 

imposed a new resource on each node indicating the vertices that has been previously 

visited so as to prevent cycles.  Desrochers et al. (1992) provided a 2-cycle elimination 

algorithm that eliminates the cycles with an i-j-i form.  Irnich and Villeneuve (2006) 

extended the 2-cycle elimination to k-cycle elimination where cycles containing k (or less) 

nodes are removed.  

 

CDVRPPD Model 
 

In a real-time scheme, a planning horizon [0, H] is applied to the evacuation process as 

illustrated in Figure , where H is the maximum evacuation time.  H is evenly divided 

into /H l intervals with equal length l.  The length l is determined based on the 

problem size.  
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Figure Time Intervals over the Planning Horizon 

 

Notations applied to the CDVRPPD model are as follows: 

 

tN  = Set of unfulfilled pickup points in t, t T . 

tF  = Set of fulfilled pickup points in t, t T . 

tE  = Set of new pickup points in t, t T . 

tV  = Set of vertices in t, t t tV N S M LtS M L , t T . 

tA  = Set of arcs in t, t T . 

ijtc  = Travel time on arc ,i j  in t, , ti j A , t T . 

'ijtc  = Predicted travel time on arc ,i j  in t, , ti j A , t T . 

rtc  = Travel time of a feasible route r in t, tr R , t T . 

H = Maximum allowed evacuation time. 

l = Interval length. 

T = Set of intervals, 0 1 /, , , H lT t t t, t, H l/tt H l/tttt . 

t = Time interval, t T . 

t  = Preceding interval to t, 0/t T t . 

t  = Subsequent interval to t, // H lt T t . 
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tR  = Set of feasible routes in t, t T . 

'tR  = Subset of feasible routes in t, t T . 

tL  = Set of vehicle locations in t, t T . 

ijtc  = Cost of using arc (i, j) in t, t T , where 
2 2

jtit
ijt ijtc c  

itu  = Vehicle load after visiting pickup point i in t, 
t t

i N L
t

L
t

L , t T . 

 

As shown in Figure , at the beginning of interval t, all the evacuation data, including 

vehicle locations tL , unfulfilled demands tN , and arc travel times ijtc , are updated.  A 

CDVRPPD model is then formulated for generating transit vehicle routes applicable in t+.  

The CDVRPPD model is proactive that the evacuation data in t+ are estimated based on 

the evacuation data in t-.  

 

Link travel time is predicted by weighted moving average (Hunter, 1986).  The weighted 

moving average method uses a weighting factor which gives more importance to recent 

observations while not discarding the older observations.  The predicted travel time on 

arc (i, j) in t+, '
ijt

c , is calculated using Equation (3.45) – (3.46). 

 

 ' 1ijtijt ijt
c c  (3.45) 

 

Where, ijtc  is the observed travel time on arc (i, j) in t. λ is the weighting factor that 

0 1 . ijt  is the average of observed travel times on arc (i, j) in t-, which is 

calculated using Equation (3.46). 

 

 0

t

ijt
t t

ijt

c

h
 (3.46) 
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Where h is the number of observations recorded in the historical data set. 

 

The robustness and accuracy of the weighted moving average method depends on the 

value of the weighting factor, λ.  λ determines how responsive a forecast is to travel time 

surge.  For a real-time system with short-term travel time forecasting, a value of 0.38  

is suggested by Raiyn and Toledo (2014).  The major advantage of the weighted moving 

average method is that it minimizes the data storage and computing requirements, which 

makes it suitable for real-time applications. 

 

The set of vehicle locations in t+, 
t

L , is determined based on the vehicle locations in t, 

tL , and the arc travel time ijtc . 
t

L  is constantly changed over time.  It is necessary to 

include 
t

L  when formulating the CDVRPPD model.  Each vehicle k’s location is usually 

considered as a depot where the vehicle k departs in t+.  Thus, the problem turns to be a 

CDVRPPD with 1
t

L  depots, which consists of 
t

L  temporary depots at the vehicle 

locations and one real depot.  

 

For the vehicle routing problem with multiple depots, one of the most common methods 

is clustering which assigns pickup points to a depot.  This procedure is deemed as a 

Generalized Assignment Problem (GAP).  Once the GAP is solved, the problem is 

decomposed into multiple single-depot problems.  Vehicle-flow formulation and set 

partitioning formulation are two classical methods to model and solve the problem.  

 

For the CDVRPPD with multiple depots, vehicle k’s temporary location k
t

L  is counted as 

a depot; however, no vehicle other than vehicle k can start from k
tL .  In this particular 

case, the problem can be converted to a CDVRPPD with single depot by introducing 

dummy pickup points in the network.  A dummy pickup point nk is added at vehicle k’s 

location.  Demand of nk equals to vehicle k’s load, and service time at nk is 0.  Travel time 

from nk to other nodes is calculated according to their distance.  In particular, travel time 
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from depot s0 to nk is set to 0, and travel times from pickup points and shelters to nk are 

set to infinite.  After adding 
t

L  dummy pickup points, all the temporary depots are 

replaced by dummy pickup points.  The problem is reduced to a CDVRPPD with single 

depot.  The cost of adding 
t

L  dummy pickup points is that 
t

L  rows are added into the 

model. However, the complexity of the model is greatly reduced. 

 

The set of unfulfilled pickup points in t, tN , is formulated by Equation (3.47). 

 

 0,  when 
\ ,  otherwiset

t t t

N t t
N

N E F\ ,
t t

E \
 (3.47) 

 

The set of unfulfilled pickup points in t+, 
t

N , is predicted by Equation (3.48).  When 

estimating 
t

N , it does not take into account the pickup requests that arrive in t.  The 

pickup requests that arrive in t will be considered in the next interval.  The total pickup 

points set in t , including both the real pickup points and the dummy pickup points, is 

t t
N L

t
L

t
L . 

 

 \ ,  ,t tt
N N F t t T  (3.48) 

 

In order to explicitly describe the graph G in the dynamic environment, two sets of 

vertices are introduced when representing the network in t.  Given a vertex i, 
it

V  is 

defined as the set of vertices j such that arc (i, j) is not prohibited in t+, i.e., the vertices in 

the set of 
it

V  are directly reachable from i.  Similarly, 
it

V  denotes the set of vertices j 

from which vertex i is directly reachable in t+. 
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Let 
irt

 be a variable indicating if route r visits pickup point i in t+. 

 

1,  if route  visits pickup point  in ,  ,  ',  

0,  otherwise
t t t

irt

r i t t T r R i N L
t

L
t

L
 

 

The CDVRPPD model has a binary variable 
rt

x  indicating whether route r is used in t+. 

 

1,  if route  is used in ,  ,  '

0,  otherwise
t

rt

r t t T r R
x  

 

For interval t+, the master problem model of CDVRPPD is formulated by (3.49) – (3.53). 

 

 
'

min
t

rt rt
r R

c x  (3.49) 

 
'

1,  
t

irt rt t t
r R

x i N L
t

L
t

L  (3.50) 

 0,1 ,  ',  
rt t

x r R t T  (3.51) 

 '
t t

R R  (3.52) 

 t T  (3.53) 
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The master problem model is to select transit vehicle routes over the planning horizon to 

fulfill pickup requests from registered evacuees and unregistered evacuees so as to 

minimize the total travel cost.  Constraints (3.50) ensure that each pickup point i is 

covered by at least one route r in the routes set 
t

R .  It also requires a sub-problem model 

to generate routes with negative reduced cost.  Let 
1 2

, , ,
t t

t t t N LL
t

LL
,,

N
,

L
 be the set 

of dual variables associated with (3.50) and 
1 2

, , ,
t t

t t t N LL
t

LL
,,

N
,

L
 be the dual 

optimal solution.  The sub-problem model is formulated as follows. 

 min
t t

ijt ijt
i V j V

c z  (3.54) 

 1
ijt

i M j S

z  (3.55) 

 1
jt

ijt
j Mi V

z  (3.56) 

 1
it

ijt
i S j V

z  (3.57) 

 0,  ,  ,  
t t

iot ojt t
i V j V

z z o V o i o j  (3.58) 

 0,  ,  
ijt

z i S j M SS  (3.59) 

 0,  ,  
ijt t t

z i N L j Sj,  
t

L jj,   (3.60) 

 0,  ,  
ijt t t

z i M j N L ML M
t

L
t  (3.61) 

 ,  , ,  ,    j i jit jt ijt t t
u u Qz Q d i j N L i j such that d d Q,  LL i j,  ,   (3.62) 

 ,  i it t t
d u Q i N L

t
L

tt
L

t
 (3.63) 
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 0,1 ,  ,
ijt t

z i j V  (3.64) 

 

ijt
z  is decision variable. 

 

1,  if arc ,  is used in the shortest path in ,  

,  ,  

0,  otherwi

 

se

,
ijt t t

i j t

t T i V j V i jz  

 

The CDVRPPD model is similar to the CVRPPD model.  Both are formulated based on a 

master problem model and sub-problem model structure.  Constraints (3.55) – (3.58) are 

flow conservation constraints.  Constraints (3.59) – (3.61) are connectivity constraints.  

Constraints (3.62) – (3.63) are the sub-tour elimination constraint.  Constraints (3.64) 

ensure the integrality. 

 

Dynamic Interval 
 

The interval length, l, in which the optimization process is performed, is directly related 

to the network size.  It is an important parameter in the CDVRPPD model development.  

When a new pickup request is collected in t-, it will be processed in t, and then an updated 

routing plan will be implemented in t+.  Hence, a new pickup request has to wait at least 

one interval until an updated routing plan is implemented.  On one hand, a short interval 

is beneficial to decreasing the waiting time of the new pickup request; on the other hand, 

a long interval is imperative at the initial stage of the planning horizon due to the 

computational burden.  In instances where new pickup requests from unregistered 

evacuees are infrequent, the network size will decrease after the first several intervals.  

As a result, the computational burden will be reduced.  For the CDVRPPD, it is necessary 

to adjust the interval length dynamically in order to keep the model reacting to the 

evacuation data updates. 
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In order to overcome the deficiency of fixed-length interval, the dynamic interval is 

implemented.  The length of interval t is calculated based on the computation time in t-. 

 ,  , ,  1t ct
l t t t T  (3.65) 

Where, lt is the length of interval t. 
ct

t  is the computation time in t-.  β is the incremental 

factor which represents the percent of increase.  At the initial stage of the evacuation 

process, the network size increases with the new pickup request coming into the system.  

In response, the interval length will increase accordingly by multiplying the incremental 

factor β.  It is expected that the computation time in t shows downtrend when the number 

of completed requests in t exceeds the number of new requests in t-.  In this case, the 

incremental factor β makes the interval length falling lag behind the computation time.  It 

ensures a surplus of time each interval, which could be used to deal with uncertainties. 

 

2-Stage Intermodal Evacuation Model 
 

During an emergency event, transit may not be sufficient to manage the whole evacuation 

due to its limitations, such as limited bus capacity and driver availability.  In this case, 

transit is usually integrated with other mass evacuation alternatives to ensure people are 

evacuated promptly.  In this report, a 2-stage real time evacuation model is developed for 

the SmartEvac system.  In the first stage, transit is used to transfer the evacuees to a train 

station.  In the second stage, multiple trains are used to transfer the evacuees to safety 

shelters.  The destination in the CDVRPPD model is revised from the shelters to the train 

station.  In addition, multiple time windows are imposed on the bus arrival time at train 

station in order to make sure a smooth transition from transit to train transportation.  The 

set of time windows W at the train station is defined as follows. 

 | ,i i i iW w w a b  (3.66) 

Where, ai and bi are the start time and end time of time window wi. 

 

For interval t+, the master problem model is modified based on the CDVRPPD master 

model formulated by (3.49) – (3.53).  An extra constraint (3.67) is added to the model to 
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ensure that the number of evacuees that arrive at the train station in a specific time 

window does not exceed the capacity of a train. 

 ,  
r i

train irt
w

u Q w W  (3.67) 

Where, urt+ is the route r’s load when the related vehicle arrives the train station.  σr is the 

route r’s arrival time at the train station.  Qtrain is the train’s capacity. 

 

The sub-problem model (3.54) – (3.64) is modified by adding constraint (3.68) to ensure 

bus arrives at the train station in a specific time window within W.  

 ,  
t

w w W  (3.68) 

  

Solution Algorithm 
 

In order to solve the CDVRPPD without enumerating all the routes, a column generation 

approach is applied to the problem.  The general process of the column generation 

approach is presented as follows.  First, an initial subset '
t

R  of all feasible routes 
t

R  is 

enumerated.  The LRMP, whose routes set is restricted to '
t

R , is then solved, and the 

dual solution is obtained.  The dual solution is utilized in a sub-problem to determine if 

there are any routes that should be added to '
t

R  towards an optimum.  The LRMP is 

then resolved with respect to the expanded '
t

R .  This process repeats until no additional 

routes can be found that further optimize the objective.  At this point, the optimum 

solution to the LMP with 
t

R  is found by solving the LRMP with '
t

R .  The optimum 

solution to the LMP is not necessarily an integer; the solution is actually fractional most 

of the time.  If it is fractional, the final step is to solve the RMP as an integer problem in 

order to get an integer solution.  A flow chart of the column generation method is shown 

in Figure . 
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Figure Column Generation Approach Flow Chart 

 

The specific procedures of the column generation method are presented by the following 

steps: 

Step 1. Create an initial subset of columns, ',  '
t t t

R R R . 

Step 2. Solve the LRMP, and get the optimal solution ,  '
rt t

y r R  and the 

corresponding dual solution t . 

Step 3. Solve the ESPPCC sub-problem with t . Identify routes ,  
t

r r R satisfying 

0
rt

c . 

Step 4. If r , add r into '
t

R  and go to step 2. 

Step 5. If r , check if 
rt

y  is an integer solution. 

Step 6. If 
rt

y  is integer, go to step 8. 

Step 7. If 
rt

y  is fractional, solve the integer RMP. 

Step 8. End. 
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Initialization 
 

Firstly, a set of columns is initialized for the LRMP.  The initial set of columns needs to 

include at least a feasible solution to the LRMP.  A common initial set is made of routes 

visiting a single pickup point, i.e. routes of type C – N – M – C.  Since a good set of 

initial routes helps to generate routes with low reduced cost (Toth et al., 2001), quick 

heuristics are implemented to generate the initial routes set with high quality. 

 

In t0, the Clarke and Wright Savings Algorithm (Clarke and Wright, 1964) is applied to 

create initial routes.  The Clarke and Wright Savings Algorithm is based on notion of 

savings.  The basic idea is that a cost saving 0 0ij i j ijs c c c  is generated when two 

routes 0, , ,0i, ,0  and 0, , ,0j ,0  can be feasibly merged in to a single route 

0, , , , ,0i j, , , ,0j,, . The specific procedures of the algorithm are implemented as follows. 

 

Step 1. Create an initial routes set R’ including |N| vehicle routes.  Each route has the 

following route structure, 0, , ,0 ,  ii m i N , where mi is the nearest shelter to pickup 

point i. 

 

Step 2. Calculate the cost savings 0 0 ,  , ,  
i iij im m j ijs c c c c i j N i j , where 

0 0,  
imc i N .  Rank the savings sij and list them in descending order.  This creates the 

savings list. 

 

Step 3. Process the savings list beginning with the topmost entry.  For sij, find route 

1 1,  'r r R  that starts with (0, j) and route 2 2,  'r r R  that ends with (i, mi, 0).  Combine r1 

and r2 into a new route r3 by deleting (0, j) and (i, mi, 0) and introducing (i, j).  If r3 is 

feasible to the model, add r3 into R’ and remove r1 and r2 from R’.  

 

Step 4. Iterate to the next entry in the savings list until the end. 
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The advantage of the Clarke and Wright Savings Algorithm lies in its simplicity and 

speed, which makes it suitable to generate a good set of initial routes.  It typically runs 

within 0.5 seconds on Christofides, Mingozzi, and Toth’s (1979) benchmark instances 

with 100 nodes. 

 

The initialization step is handled differently in the interval 0\t T t .  The initial 

routes set '
t

R  in t+ is created based on the optimal routes set Rt in t.  First, the Clarke 

and Wright Savings Algorithm is used to generate an initial routes set Rini that serves the 

new pickup points in Et
-.  Second, the routes set Rt is updated.  The vehicle routes that 

have been completed in t are removed from Rt.  The pickup points that have been visited 

in t are removed from the routes as well.  Third, an insertion algorithm is applied to Rt.  

For a new pickup point n in Et and a route r in Rt, the algorithm inserts the new pickup 

point n to an arc (i, j) in r such that the incremental cost of inserting n between i and j is 

minimal.  A flow chart of the insertion algorithm is shown in Figure . 
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Figure Insertion Algorithm Flow Chart 

 

The specific procedures are described as follows: 

For every pickup point n in Et 

 For every route r in opt
tR  

Find an arc (i, j) in r such that int njt ijt
c c c  is minimal.  



45 
 

,
arg min

int njt ijti j
c c c  

Construct a new route r’ by replacing (i, j) with (i, n, j). 

If r’ is feasible to the model, add r’ into opt
tR . 

Update opt
tR  

End 

 

Finally, the initial routes set is expanded by combining opt
tR  with '

t
R . 

 

2-Cycle Elimination 
 

The objective of the pricing sub-problem is to identify the routes with negative reduced 

cost.  The first step is to find the shortest path to each pickup point.  This step is 

considered to be |N| ESPPCCs, each of which is NP-hard (Dror, 1994).  For each 

ESPPCC, the task is to find the shortest partial path r from Node 0 to Node ,  i i N . 

Since shelters are not involved in finding the shortest partial paths, the network can be 

simplified by removing the shelters.  Solving the ESPPCC is the most time consuming 

procedure in the column generation and thus significantly affects the performance of the 

optimization.  Algorithms solving the ESPPCC in the literature include dynamic 

programming, branch-cut, and classic heuristics. 

 

In this section, a cycle elimination (CE) algorithm is proposed based on standard labeling 

techniques presented by Desrochers (1988), Beasley and Christofides (1989), and Feillet 

et al. (2004).  The CE algorithm first turns the ESPPCC to 2-cycle SPPCC by allowing 

cycles with length ≤ 2.  Then a resource constraint is iteratively imposed upon the model 

to eliminate cycles with length > 2.  Resource in the ESPPCC is related to capacity, time, 

and node availability etc., whose consumption is always nonnegative.  The fundamental 

of the CE algorithm is based on Desrochers’ (1988) labeling algorithm which associates 

each potential partial path with a label indicating the consumption of resources.  
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The CE algorithm creates labels for each node ,  i i N .  Each label li represents a partial 

path Xi from node 0 to node i. li includes a pointer Pre(li) which links to li’s parent label.  

li’s parent label is defined as the label from which li is generated. Let q(li) denote the 

capacity consumed on path Xi and c(li) denote the travel cost associated with the path Xi.  

Thus a label li is represented as li(Pre, q, c).  The algorithm repeatedly extends each label 

to its successors until all labels have been extended in all feasible ways.  The extension is 

operated by appending an arc (i, j) to path Xi to generate a new path Xj.  When a label li is 

extended to a label lj, the capacity consumption and the path cost are updated as follows, 

 

 j i jq l q l d  (3.69) 

 j i ijc l c l c  (3.70) 

 

A new label lj(pre, q, c) is generated only if, 

 

 jq l Q  (3.71) 

 

It is noted that (3.69) is strictly non-decreasing since dj > 0 for all j N .  The extension 

of a label li is denoted by Ext(li). 

 

Dominance Rule 
 

The efficiency of the CE algorithm highly depends on the number of labels generated.  

Since the extension operation creates exponential number of labels, it is necessary to 

discard the labels that will not lead to an optimal solution.  For this purpose, a dominance 

rule is applied in the label extension so that the algorithm records only non-dominated 

labels.  
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If there are two labels li(1) and li(2) associated with node i satisfying q(li(1)) ≤ q(li(2)), c(li(1)) 

≤ c(li(2)), and li(1) ≠ li(2), then any feasible extension from label li(2) will be also feasible 

from label li(1).  In addition, new labels created based on label li(1) will always be better 

than the labels created based on label li(2), in terms of travel cost (if the objective is to 

minimize travel cost).  Therefore, the label li(2) can be discarded.  The dominance rule is 

defined that li(1) dominates li(2), denoted by (1) (2)i dom il l (2)l , if and only if the following 

conditions are met. 

 

 (1) (2)i iq l q l  (3.72) 

 (1) (2)i ic l c l  (3.73) 

 (1) (2)i il l  (3.74) 

 

Figure  illustrates the dominance rule that any label in the shaded area will dominate 

label li(2). 

 

Figure Illustration of Dominance Rule 

After a new label li is generated, it is necessary to check whether the new label is 

dominated by other labels associated with the same node, and whether the new label 

dominates other labels.  The procedure of dominance check to li is denoted by Dom(li). 
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Any label which has been identified as being dominated by other labels will be discarded 

because any extension from the dominated label will be worse than the extension from 

the dominant label. 

 

Enhanced Dominance Rules for 2-Cycle Elimination 
 

The above dominance rule is applicable in the context of finding a non-elementary 

shortest path.  Because of the existence of negative cost arcs, the relaxation of elementary 

constraint results in a lot of paths with cycles.  This typically weakens the lower bound 

which leads to a bigger branch-and-bound tree.  To improve the lower bound, Houck et al. 

(1980) proposed an algorithm for solving the SPPRC with 2-cycle elimination.  Larsen 

(1999) extended Houck’s algorithm with new definition of labels.  In this section, 

Larsen’s method is enhanced by improving the dominance rules. 

 

Let (i, q) denote a state of node i, which indicates the capacity consumption.  For each 

state, the algorithm generates two types of labels as follows.  A new parameter Typ is 

appended to li. Typ(lj) denotes the type of li. 

 

1. Strong-dominant label that Typ(lj) = Strong.  A strong-dominant label is the 

prevailing label that dominates the extension.  However, a strong-dominant label 

li cannot be extended to its predecessor node.  Let v(li) denote the associated node 

of li. li ‘s predecessor node is the node which li’s parent label is associated with, 

denoted by v(Pre(li)). 

2. Weak-dominant label that Typ(lj) = Weak.  A weak-dominant label is dominated 

by the strong-dominant label.  A weak-dominant label has the potential of being 

extended to the strong-dominant label’s predecessor node.  It actually provides an 

alternative path when the extension of the strong-dominant label forms a 2-cycle. 

 

The algorithm can effectively eliminate 2-cycle by introducing a weak-dominant label for 

each state.  As a result, the total number of labels is doubled.  Therefore, the 

computational complexity remains the same.  
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Strong-dominant label and weak-dominant label have different extension rules.  When a 

label li is extended to generate a label lj, the following extension rules are applied.  

 

1. If Typ(li) = Strong, (3.69) – (3.71) are applied. li is not permitted to extend to v(lj) 

if v(pre(li)) = v(lj).  When v(pre(li)) = v(lj), the weak-dominant label is extended to 

v(lj) instead of il  and (3.69) – (3.71) are applied. 

2. If Typ(li) = Weak, li is extendable on the condition that v(lj) is the predecessor 

node of the strong-dominant label which dominates li, otherwise, il  is not 

extendable.  When v(lj) is the predecessor node of the strong-dominant label, li is 

extended instead of the strong-dominant label and (3.69) – (3.71) are applied. 

 

In summary, a strong-dominant label is extendable to any node except its predecessor 

node.  A weak-dominant label is not extendable to any nodes other than the predecessor 

node of the strong-dominant label.  In addition, any extension has to satisfy (3.69) – 

(3.71). 

New dominance rules are added in addition to (3.72) – (3.74), which are described as 

follows.  Assume that li(1) is an old label at node i and li(2) is a new generated label at node 

i.  If (1) (2)i dom il l (2)l  according to (3.72) – (3.74), li(2) can be discarded only if one of the 

following conditions are satisfied. 

  

1. Typ(li(1)) = Strong and v(Pre(li(1))) = v(Pre(li(2))). 

2. Typ(li(1)) = Weak. 

 

When Typ(li(1)) = Strong and v(Pre(li(1))) ≠ v(Pre(li(2))), the new generated label li(2) will 

proceed to compare with the weak-dominant label dominated by li(1), to determine 

whether it can replace the weak-dominant label. 

 

If 2 1i dom il l 1ild i , then li(1) can be discarded only if one of the following conditions are 

satisfied. 
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1. Typ(li(1)) = Strong and v(Pre(li(1))) = v(Pre(li(2))). 

2. Typ(li(1)) = Weak. 

 

Similarly, when Typ(li(1)) = Strong and v(Pre(li(1))) ≠ v(Pre(li(2))), the old label li(1) will 

become the weak-dominant label which is dominated by li(2). 

 

The pseudo code of the algorithm is presented as follows.  Г represents the set of labels 

which have not been extended.  Only strong-dominant labels are placed in Г.  Labels in Г 

are placed in lexicographical order.  Given two labels li(Pre, q, c, Typ) and lj(Pre, q, c, 

Typ), li is lexicographically smaller than lj if q(li) < q(lj). Ext(li) is the extension procedure 

which extends label li to its successors.  The capacity constraint is checked and only 

feasible labels are produced. Dom(li) is the procedure which applies the dominance rule 

to the new generated label.  When a new label li(Pre, q, c, Typ) is generated at node i, the 

dominance rule is applied to check whether the new label is dominated by the old label 

associated with state (i, q(li)).  Then the strong-dominant label and the weak-dominant 

label associated with state (i, q(li)) are updated according to the results of the dominance 

check.  The specific procedures of the 2-cycle elimination algorithm are presented as 

follows. 

 

Step 1. Initialization 

Initialize the label l0 = (Null, 0, 0, Strong) for node 0.  Initialize li = (Null, q, +∞, Strong) 

and li’ = (Null, q, +∞, Weak) for all other node i, i N  and q, 0 < q ≤ Q. Then, let Г = 

{l0}. 

Step 2. Label Selection 

If Г = Ø, go to Step 4. 

Else, select the first label li in Г. Then Remove li from Г. 

Step 3. Label Extension 

For all ,i j A , j ≠ 0 

Create a new label lj ← Ext(li). 

Apply the dominance rule to lj, Dom(lj). 
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Step 4. Insert all new generated strong-dominant labels into Г in lexicographical order. If 

Г ≠ , go to Step 2. 

Step 5. Stop. All labels are extended in all feasible ways. 

 

The algorithm generates a set of strong-dominant labels at each node i, i N .  Then the 

best label at node i, which indicates a shortest path from node 0 to node i, is found.  

 

Computational Results 
 

Benchmark instances available at http://goo.gl/9tclrK are used to evaluate the proposed 

algorithms.  The instances were performed on an Intel P8200 Duo 2.2 GHz PC with 4G 

memory.  CPLEX was used as the LP and MIP solver.  For each instance, the lower 

bound, the number of columns in Rt, and the total computational time taken in CPU 

seconds were reported.  The results from Agarwal, Mathur, and Salkin (1989), Bixby 

(1998), and Hadjiconstantinou, Christofides, and Mingozzi (1995) were also presented in 

Table 1– Table 4 in comparison. 

 

Table 1 Computational Results 

No. Instance Nodes Z* ZLB Effectiveness 
of ZLB Cols Time for Generating 

Columns (s) 
Total CPU Time 
(s) 

1 E016-03m 15 273 270 98.9% 264 1.4 3.9 

2 E021-04m 20 353 353 100.0% 492 1.1 3.5 

3 E026-08m 25 607 606 99.8% 642 1.0 2.4 

4 E031-09h 30 610 605 99.2% 1137 7.5 19.1 

5 E036-11h 35 698 698 100.0% 1644 6.5 13.7 

6 E041-14H 40 859 859 100.0% 1829 21.0 59.5 

7 E051-05e 50 521 518 99.4% 4904 53.1 138.8 

8 E076-10e 75 830 815 98.2% 8919 126.5 335.1 

9 E101-08e 100 815 804 98.6% 10248 744.8 2381.2 

10 E101-10c 100 820 803 97.9% 14346 801.2 2503.2 
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Table 2 Results Comparison of Agarwal, Mathur, and Salkin (AMS) and CE 

Problem n Z* 
AMS CE Algorithm 

ZLB Effectiveness 
of ZLB ZLB Effectiveness 

of ZLB Total CPU Sec 

E016-03M 16 273 268 98.2% 270 98.9% 3.9 

E021-04M 21 353 351 99.4% 353 100.0% 3.5 

E022-04G 22 375 374 99.7% 369 98.4% 1.1 

E026-08M 26 607 606 99.8% 606 99.8% 2.4 

  

Table 3 Results Comparison of Bixby and CE 

Problem n Z* 
Bixby CE Algorithm 

ZLB Effectiveness 
of ZLB ZLB Effectiveness 

of ZLB Total CPU Sec 

E023-03G 23 568 566 99.6% 567 99.8% 23.5 

E030-04S 30 503 503 100.0% 503 100.0% 9.5 

  

Table 4 Results Comparison of Hadjiconstantinou, Christofides, and Mingozzi (HCM) 
and CE 

Problem n Z* 
HCM CE Algorithm 

ZLB Effectiveness 
of ZLB ZLB Effectiveness 

of ZLB Total CPU Sec 

E036-llH 36 698 694 99.4% 698 100.0% 13.7 

E041-14H 41 859 852 99.2% 859 100.0% 59.5 

E051-05E 51 521 516 99.0% 518 99.4% 138.8 

E076-10E 76 830 815 98.2% 815 98.2% 335.1 

E101-08E 101 815 792 97.2% 804 98.7% 2381.2 

  

In Table 1– Table 3, the name of the instance and the number of nodes involved are listed.  

The value of the optimal integer solution Z*, lower bound ZLB, and the effectiveness of 
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ZLB, which is the difference between the optimum and lower bound, are provided for the 

AMS, Bixby, HCM methods, and CE algorithm, respectively.  In addition, the 

computational time of the CE algorithm is provided in the table, however, no data is 

found regarding the computational time of the AMS, Bixby, HCM methods.  Among nine 

of the eleven instances, the lower bound ZLB provided by the CE algorithm proposed is 

tighter than the other three methods.  There is only one out of eleven case that the lower 

bound ZLB provided by the CE algorithm is slightly not as good as that generated by AMS 

(a difference of 0.7%). 
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SIMULATION AND CASE STUDY 
 

In this chapter, a case study of the Hurricane Gustavo evacuation in Gulfport is proposed 

to evaluate the SmartEvac system.  The case study is based on CORSIM simulation, 

which provides dynamic travel time for the system.  Scenarios corresponding to different 

evacuation situations are built in the simulation.  The capability of the SmartEvac system 

working in a dynamic environment is validated by the case study. 

 

CORSIM Network Development 
 

In this case study, emergency evacuation scenarios are replicated based on the data from 

the Hurricane Gustavo emergency evacuation in 2008.  There are 182 registered evacuees 

across 66 pickup points in the Mississippi Gulf Coast region.  In addition, based on 

CTA’s experience, 46 unregistered evacuees across 30 pickup points are considered in 

this case study.  The unregistered evacuees are expected to call for help at any time 

during the emergency evacuation.  Three shelters in the region provide temporary 

housing for the evacuees.  The distribution of shelters and pickup points with registered 

evacuees is shown in Figure . 

 
Figure Distribution of Shelters and Pickup Points with Registered Evacuees 
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Detail information about shelters and pickup points with registered evacuees will be 

available upon request, which is subject to CTA’s approval. 

 

A homogenous fleet of transit vehicle is used in the emergency evacuation.  The capacity 

of the transit vehicle is 30.  Each transit vehicle has onboard equipment that is able to 

receive orders from the SmartEvac system in real time.  The dwell time at each pickup 

point is two minutes. 

 

According to the CTA’s evacuation plan, the emergency evacuation started at the 7:00 

AM rush hour.  It is assumed that calls from the unregistered evacuees will evenly arrive 

with 3-minute interval. 

 

CORSIM Simulation Development 
 

The transportation network data and evacuation data used to build the CORSIM network 

are collected from field survey, CTA, and the Office of Engineering, etc.  Figure shows 

the data used in the simulation. 
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Figure Data Used in the CORSIM Simulation 

Field surveys were conducted at 23 major intersections in the Gulfport Coast region.  

These intersections are mainly distributed along Pass Road, Highway 605, Canal Road, 

and Popps Ferry Road.  Radar detectors and manual counters were deployed at the 23 

intersections for five days to collect daily traffic volumes, peak hour traffic volumes, and 

turning percentage data.  Turn prohibitions are implemented at specific intersections 

where prohibitory traffic signs are placed. 

 

The CORSIM network is shown in Figure .  Interstate 10 runs east and west of the 

Mississippi Gulf Coast region.  Other major roadways include I-110, U.S.90, U.S.49, 

Pass Road, Highway 605, and Highway 67.  The CORSIM network consists of 1,632 

links and 1,341 nodes, in which 146 nodes are signalized intersections.  The traffic signal 

timing plans were extracted from the City Engineering ACTRA system. 
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Figure  CORSIM Network of Gulfport Region 

In addition to the intersections and transition nodes, depots, shelters, and pickup points 

are coded in the CORSIM network.  In Figure , depots, shelters, and pickup points 

with registered evacuees are marked with yellow, red, and blue color in the CORSIM 

network, respectively.  The shortest travel times among vertices including depots, shelters, 

and pickup points are calculated using a modified Dijkstra Algorithm (Wen, 2012) in 

which turn prohibitions are considered.  

 

The length of the simulation is two hours which is consistent with the CTA’s evacuation 

plan.  Thirty intervals, 1 2 30, , ,t t t30t , with equal length of three minutes are implemented in 

the simulation. 

 

The CORSIM simulation model is fine-tuned with morning rush hour travel time data 

collected in the field.  The simulated travel times on two major roads in the area, a U.S. 

90 segment between the Bay St. Louis Bridge and the Biloxi Bay Bridge, and a Pass 

Road segment between U.S. 49 and Rodeo Drive, compared with those from Google 

Maps and historical data of 2008, are shown in Figure .  
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Figure Travel Time Comparison between Simulation, Google Map, and Historical 
Data 

 

Results of Case Study 
 

To evaluate the performance of the SmartEvac system in an emergency evacuation, 

especially when dynamic factors, such as unregistered evacuees’ pickup requests and 

network interruptions, are considered, the following emergency evacuation scenarios are 

developed. 

 

Scenario 1 
 

Scenario 1 is developed as a base scenario.  There are no dynamic factors in the 

emergency evacuation which means that the transit vehicle routes remain fixed all the 

time.  

 

Results from the SmartEvac system are displayed in Figure .  There are seven transit 

vehicles used in the emergency evacuation.  The total travel time of all the seven transit 

vehicle routes is 417.9 minutes.  The total computation time is 157 seconds while the 

time for generating columns is 68 seconds. 

0

10

20

30

40

50

60

US 90 EB US 90 WB Pass RD EB Pass RD WB

Tr
av

el
 T

im
e 

(m
in

ut
e)

Travel Time Comparison

Simulation Google Map Historical Data



59 
 

 
Figure  Results from the Scenario 1 

 

Each individual transit vehicle route is listed as follows. 

Route 1: cost = 40.5 minutes and load = 30. 

Node 0 - Node 27 - Node 26 - Node 16 - Node 11 - Node 4 - Node 9 - Node 1 

Route 2: cost = 43.0 minutes and load = 16 

Node 0 - Node 6 - Node 21 - Node 17 - Node 67 - Node 61 - Node 60 - Node 63 - Node 

62 - Node 1 

Route 3: cost = 20.4 minutes and load = 18 

Node 0 - Node 24 - Node 20 - Node 23 - Node 3 

Route 4: cost = 48.4 minutes and load = 29 

Node 0 - Node 59 - Node 37 - Node 48 - Node 32 - Node 68 - Node 36 - Node 47 - Node 

3 

Route 5: cost = 79.9 minutes and load = 30 

Node 0 - Node 10 - Node 13 - Node 5 - Node 12 - Node 18 - Node 8 - Node 14 - Node 15 

- Node 19 - Node 22 - Node 7 - Node 66 - Node 25 - Node 1 

Route 6: cost = 114.1 minutes and load = 29 

Node 0 - Node 44 - Node 39 - Node 50 - Node 57 - Node 69 - Node 29 - Node 28 - Node 

34 - Node 49 - Node 33 - Node 55 - Node 42 - Node 53 - Node 51 - Node 65 - Node 64 - 

Node 2 

Route 7: cost = 71.7 minutes and load = 30 
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Node 0 - Node 41 - Node 31 - Node 35 - Node 40 - Node 52 - Node 30 - Node 46 - Node 

58 - Node 45 - Node 43 - Node 54 - Node 56 - Node 38 - Node 2 

 

Scenario 2 
 

In order to replicate the scenario that unregistered evacuees call for pickup after the 

emergency evacuation starts, Scenario 2 is created based on Scenario 1, but new pickup 

requests from unregistered evacuees are generated per interval. 

 

Take interval t1 as an example.  In t1, a new pickup request at Node 70 with demand of 1 

is added in the system.  In response to the new request, the SmartEvac system re-

optimizes the transit vehicle routes in t2.  After optimization, three out of the seven routes 

are adjusted.  The updated transit vehicle routes will be implemented in t3, as shown in 

Figure . 

 
Figure  Transit Vehicle Routes after Re-optimization in Scenario 2 t1 

The total cost of the re-optimized vehicle routes is 398.7 minutes.  There are still seven 

transit vehicles used in the emergency evacuation.  The computation time for the re-

optimization is 173 seconds.  In comparison with the transit vehicle routes in Scenario 1, 

Route 1, Route 3, and Route 5 are re-optimized due to the new pickup request at Node 70. 

The revisions are shown as follows. 

Route 1: cost = 65.6 minutes and load = 21 
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Dummy Node - Node 27 - Node 18 - Node 8 - Node 14 - Node 15 - Node 19 - Node 22 - 

Node 7 - Node 66 - Node 25 - Node 1 

 
Figure Comparison of Route 1 between Scenario 1 and Scenario 2 t1 

 

Route 3: cost = 33.4 minutes and load = 28 

Dummy Node - Node 23 - Node 10 - Node 12 - Node 5 - Node 13 - Node 20 - Node 24 - 

Node 3 

 
Figure  Comparison of Route 3 between Scenario 1 and Scenario 2 t1 

 

Route 5: cost = 34.5 minutes and load = 30 

Dummy Node - Node 26 - Node 16 - Node 11 - Node 4 - Node 9 - Node 70 - Node 1 
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Figure  Comparison of Route 5 between Scenario 1 and Scenario 2 t1 

 

The new added pickup request at Node 70 is serviced by Route 5.  In order to explicitly 

explain how the SmartEvac system adjusts the vehicle routes for the new pickup request, 

all of the pickup points are distributed to eight zones based on their geographic location, 

as shown in Figure .  The boundaries of the zones consist of major roads and bridges 

in the region, such as I-110, U.S.90, U.S.49, Pass Road, and Popps Ferry Bridge. 

 
Figure  The Spatial Distribution of Zones of Pickup Points 

 

The new pickup request, Node 70, is located in Zone 3.  All of the pickup points in Zone 

3 are serviced by two vehicles in Scenario 1:  Vehicle 1 on Route 1 and Vehicle 5 on 

Route 5.  Obviously, Vehicle 1 and Vehicle 5 are two candidates to pick up Node 70.  
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However, both Vehicle 1 and 5 are at full capacity, with no space left for node 70 

according to the original routing plan in Scenario 1. Therefore, another vehicle is 

required to relieve Vehicle 1 or Vehicle 5’s load in order to free up space for Node 70.  

As shown in Figure 4.5, there is only one vehicle route, Route 3 in Zone 1, which covers 

Route 5. No vehicle routes can cover Route 1 by making trivial revisions. Both Route 3 

and Route 5 include the Pass Road section from Popps Ferry Road to Veterans Avenue.  

The SmartEvac system is able to reassign the pickup points in this section from Route 5 

to Route 3 to release Vehicle 5’s capacity. Now Vehicle 5 has sufficient capacity to pick 

up Node 70 because Node 10, Node 13, Node 5, and Node 12 are taken over by Vehicle 3. 

 

However, Vehicle 5 is still not the best option to pick up Node 70 because Node 70 is 

farther away from Route 5 than Route 1.  Therefore, the SmartEvac system swaps 

Vehicle 5’s tasks with Vehicle 1’s tasks.  After this swap, Vehicle 1’s tasks after picking 

up Node 27 are taken over by Vehicle 5, and all of Vehicle 5’s tasks are taken over by 

Vehicle 1.  Finally, Vehicle 5 turns to be the most appropriate vehicle to pick up Node 70 

and Route 5 is revised by including Node 70.  

 

A new pickup request per interval is received for 30 intervals.  The SmartEvac system 

updates the pickup information and re-optimizes the transit vehicle routes accordingly.  

The results are summarized in Table 5. 

 

Table 5 Results of Scenario 2 with Fixed Interval 

Time Interval Total Cost (Minute) No. of Vehicle Computation Time (Second) 

t0 417.9 7 157 

t1 398.7 7 171 

t2 377.3 7 168 

t3 345.3 7 140 

t4 317.4 7 121 

t5 294.6 7 48 
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t6 278.0 7 31 

t7 236.4 6 12 

t8 219.6 6 10 

t9 192.5 5 3 

t10 177.0 5 2 

t11 175.9 5 4 

t12 157.0 5 2 

t13 154.4 5 2 

t14 147.7 5 2 

t15 143.7 5 3 

t16 130.5 4 6 

t17 113.6 3 1 

t18 115.2 3 1 

t19 100.3 3 1 

t20 89.3 3 1 

t21 93.3 3 1 

t22 98.5 3 1 

t23 110.6 3 1 

t24 101.8 2 1 

t25 92.1 2 1 

t26 97.0 2 1 

t27 91.8 2 1 

t28 93.2 2 1 

t29 110.1 3 1 

t30 118.7 3 1 

  

Dynamic intervals could be implemented in the optimization process.  The length of 

interval ti is calculated based on the computation time in ti-1.  The initial time interval is 
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180 seconds, and the minimum time interval is 60 seconds.  The incremental factor β is 

110%.  The results of Scenario 2 with dynamic intervals are listed in Table 6.  Table 6 

only shows the intervals in which the SmartEvac processing the new pickup requests. 
 

Table 6 Figure 10 Results of Scenario 2 with Dynamic Interval 

Total Cost 
(Minute) 

Computation 
Time (Second) 

Interval Length 

(Second) 

Wait Time 

(Second) 

New Request Arrival Time 

(Second) 

417.9 156 180  90 

399.7 171 172 262 285 

376.3 165 188 255 472 

345.2 137 182 249 613 

320.8 119 151 259 790 

296.5 51 131 213 995 

289.9 34 60 68 1155 

248.4 15 60 97 1345 

231.6 11 60 87 1530 

202.5 5 60 82 1680 

187.0 5 60 112 1900 

185.9 4 60 72 2083 

167.0 3 60 69 2257 

164.4 2 60 75 2433 

157.7 6 60 79 2587 

153.7 5 60 105 2801 

138.5 5 60 71 2979 

119.6 4 60 73 3122 

121.2 3 60 110 3350 

106.3 1 60 62 3518 

95.3 1 60 74 3701 

99.3 1 60 71 3891 

104.5 1 60 61 4023 

116.6 1 60 109 4225 

105.8 1 60 87 4419 

96.1 1 60 73 4581 
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101.0 1 60 91 4770 

95.8 1 60 82 4931 

97.2 1 60 101 5128 

116.1 1 60 84 5331 

124.7 1 60 61  

 

In Scenario 2, there is a total of 30 requests from unregistered evacuees added in the 

emergency evacuation.  Figure shows the distribution of all evacuees, including 

both registered and unregistered evacuees. 

 
Figure  CORSIM Network with Unregistered Evacuees 

 

Scenario 3 
 

Scenario 3 is developed based on Scenario 2 but certain incidents, such as traffic 

accidents and a broken bridge, are implemented. 

 

Scenario 3(a) 
 

Assuming that traffic accidents occur on U.S. 90 after the emergency evacuation starts, as 

shown in Figure , the travel speed on U.S. 90 is severely impacted by the accidents.  
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It is assumed that the average travel time on U.S. 90 in Scenario 3 is twice of what’s in 

Scenario 2. 

 
Figure  CORSIM Network of Scenario 3(a) 

The SmartEvac system is able to capture the travel time surge in real time and update the 

transit vehicle routes accordingly.  Assuming that the travel time surge happens in t1, the 

updated results comparing with the results from Scenario 2 are presented as follows. 

Results in Scenario 3(a) t1: the total travel time is 408.6 minutes and the computation 

time is 173 seconds. 

 

Route 1: cost = 74.2 minutes and load = 21 

Dummy Node - Node 27 - Node 18 - Node 8 - Node 14 - Node 15 - Node 19 - Node 22 - 

Node 7 - Node 66 - Node 25 - Node 1 

Route 2: cost = 40.0 minutes and load = 16 

Dummy Node - Node 6 - Node 21 - Node 17 - Node 67 - Node 61 - Node 60 - Node 63 - 

Node 62 - Node 1 

Route 3: cost = 33.7 minutes and load = 28 

Dummy Node - Node 23 - Node 10 - Node 12 - Node 5 - Node 13 - Node 20 - Node 24 - 

Node 3 

Route 4: cost = 44.7 minutes and load = 29 
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Dummy Node - Node 59 - Node 47 - Node 36 - Node 68 - Node 32 - Node 48 - Node 37 

- Node 3 

Route 5: cost = 36.8 minutes and load = 30 

Dummy Node - Node 26 - Node 16 - Node 11 - Node 4 - Node 9 - Node 70 - Node 1 

Route 6: cost = 79.1 minutes and load = 29 

Dummy Node - Node 44 - Node 39 - Node 50 - Node 57 - Node 69 - Node 29 - Node 28 

- Node 34 - Node 49 - Node 33 - Node 55 - Node 42 - Node 53 - Node 51 - Node 65 - 

Node 64 - Node 2 

Route 7: cost = 42.1 minutes and load = 30 

Dummy Node - Node 41 - Node 31 - Node 35 - Node 40 - Node 52 - Node 30 - Node 46 

- Node 58 - Node 45 - Node 43 - Node 54 - Node 56 - Node 38 - Node 2 

 
Figure Transit Vehicle Routes after Re-optimization in Scenario 3(a) Interval t1 

 

Three routes—Route 1, Route 4, and Route 5—are revised due to congestions on U.S. 90.  

See Figure – Figure for a comparison of the results between Scenario 2 and 

Scenario 3(a). 
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Figure  Comparison of Route 1 between Scenario 2 t1 and Scenario 3(a) t1 

 
Figure  Comparison of Route 4 between Scenario 2 t1 and Scenario 3(a) t1 

 
Figure  Comparison of Route 5 between Scenario 2 t1 and Scenario 3(a) t1 
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In response to the congestions of U.S. 90, the SmartEvac system re-optimize the transit 

vehicle routes in real time.  Since Route 1’s travel time will increase from 65.6 minutes to 

81.7 minutes due to the congestions of U.S. 90, Route 1’s section of U.S. 90 from 

Eisenhower Drive to Bellman Street is detoured at Beauvoir Road.  Vehicle 1 will be 

diverted to Pass Road, Irish Hill Drive, and Howard Avenue, which are parallel to U.S. 

90.  The travel time of Route 1 decreases from 81.8 minutes to 74.2 minutes through the 

detour.  Similarly, Route 4’s section of U.S. 90 from Tegarden Road to Eisenhower 

Driver is detoured at Tegarden Road.  Vehicle 4 will be diverted to Pass Road.  The 

travel time of Route 4 decreases from 50.3 minutes to 44.7 minutes.  Route 5’s section of 

U.S. 90 from Beauvoir Road to Porte Avenue is detoured at Beauvoir Road.  Vehicle 5 

will be diverted to Pass Road and Irish Hill Drive.  The travel time of Route 5 will 

reduced from 43.7 minutes and 36.8 minutes.  In summary, the total travel time saved 

from the detour on Routes 1, 4, and 5 is 20.1 minutes. 

 

The rest of results in scenario 3(a) from t3 to t30 are listed in Table 7. 

 

Table 7 Results of Scenario 3(a) 

Time Interval Total Cost (Minute) No. of Vehicle Computation Time (Second) 

t0 417.9 7 159 

t1 407.3 7 173 

t2 391.6 7 178 

t3 362.7 7 150 

t4 333.7 7 128 

t5 310.2 7 57 

t6 298.9 7 43 

t7 257.1 7 48 

t8 248.2 6 45 

t9 231.7 5 27 

t10 207.4 5 13 

t11 176.5 5 8 
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t12 160.4 5 3 

t13 157.8 5 1 

t14 174.8 5 2 

t15 165.1 5 4 

t16 158.9 4 2 

t17 146.9 4 2 

t18 145.8 4 3 

t19 134.5 4 3 

t20 127.1 4 2 

t21 130.5 5 2 

t22 122.5 4 1 

t23 115.5 4 1 

t24 102.5 3 1 

t25 95.7 3 1 

t26 101.3 2 1 

t27 93.2 2 1 

t28 94.2 2 1 

t29 110.9 3 1 

t30 119.6 3 1 

 

Scenario 3(b) 
 

Scenario 3(b) is developed based on Scenario 3(a), but in addition to the incidents on U.S. 

90, the Biloxi Bay Bridge is assumed to be broken from t1, which corresponds to the 

actual situation in Hurricane Gustav.  The Biloxi Bay Bridge carries U.S. 90 over Biloxi 

Bay between Biloxi and Ocean Springs, as shown in Figure . Route 1 passes the 

Biloxi Bay Bridge in Scenario 3(a). 
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Figure  CORSIM Network of Scenario 3(b) 

 

The results of Scenario 3(b) in t1 are summarized as follows.  The total travel time is 

410.6 minutes and the computation time is 177 seconds. 

 

Route 1: cost = 63.4 minutes and load = 26 

Dummy Node - Node 27 - Node 5 - Node 18 - Node 8 - Node 14 - Node 7 - Node 22 - 

Node 15 - Node 19 - Node 9 - Node 4 - Node 70 - Node 1 

Route 2: cost = 71.0 minutes and load = 20 

Dummy Node - Node 6 - Node 21 - Node 17 - Node 67 - Node 61 - Node 60 - Node 63 - 

Node 62 - Node 25 - Node 66 - Node 1 

Route 3: cost = 15.2 minutes and load = 18 

Dummy Node - Node 24 - Node 20 - Node 23 - Node 3 

Route 4: cost = 45.1 minutes and load = 29 

Dummy Node - Node 59 - Node 47 - Node 36 - Node 68 - Node 32 - Node 48 - Node 37 

- Node 3 

Route 5: cost = 36.7 minutes and load = 27 

Dummy Node - Node 10 - Node 13 - Node 12 - Node 26 - Node 16 - Node 11 - Node 1 

Route 6: cost = 110.8 minutes and load = 28 
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Dummy Node - Node 44 - Node 39 - Node 50 - Node 57 - Node 69 - Node 29 - Node 28 

- Node 34 - Node 49 - Node 33 - Node 55 - Node 42 - Node 53 - Node 51 - Node 65 - 

Node 64 - Node 2 

Route cost = 68.4 minutes and load = 30 

Dummy Node - Node 41 - Node 31 - Node 35 - Node 40 - Node 52 - Node 30 - Node 46 

- Node 58 - Node 45 - Node 43 - Node 54 - Node 56 - Node 38 - Node 2 

 

Figure shows the updated transit routes in scenario 3(b) t3. 

 
Figure  Updated Transit Routes in Scenario 3(b) t3 

 

Four routes—Route 1, Route 2, Route 3, and Route 5—are revised after the destruction 

of the Biloxi Bay Bridge.  See Figure – Figure for a comparison of the results 

between Scenario 3(a) and Scenario 3(b) in t1. 
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Figure  Comparison of Route 1 between Scenario 3(a) t3 and Scenario 3(b) t3 

 
Figure  Comparison of Route 2 between Scenario 3(a) t3 and Scenario 3(b) t3 

 
Figure  Comparison of Route 3 between Scenario 3(a) t3 and Scenario 3(b) t3 
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Figure  Comparison of Route 5 between Scenario 3(a) t3 and Scenario 3(b) t3 

In Scenario 3(b), the Biloxi Bay Bridge is hypothetically broken after the emergency 

evacuation starts.  As a result, Route 1 in Scenario 3(a) is no longer applicable to Node 

25 and Node 66.  After re-optimization, Node 25 and Node 66 are assigned to Route 2- 

Vehicle 2, which is the nearest vehicle capable of picking them up.  Because Nodes 25 

and 66 are removed from Route 1, Vehicle 1 will has sufficient capacity to pick up Node 

4, Node 9, and Node 70, which are originally carried by Vehicle 5.  The pickup points in 

Zone 3 are divided into two groups by the Biloxi Bay Bridge and the U.S. 110 Bridge 

over the Back Bay.  The first group, including Nodes 25 and 66, are assigned to Vehicle 2, 

and the second group, including the rest of nodes in Zone 3, are covered by Vehicle 1.  

This re-assignment impacts Route 3 and Route 5 as well.  The pickup points along with 

the Pass Road section between Popps Ferry Road and Rodeo Drive are distributed to 

Routes 3 and 5 optimally.  

 

The rest of results from t3 to t30 are listed in Table 8. 

 

Table 8 Figure 12 Results of Scenario 3(b) 

Time Interval Total Cost (Minute) No. of Vehicle Computation Time (Second) 

t0 417.9 7 161 

t1 410.6 7 177 

t2 394.9 7 180 

t3 365.6 6 156 
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t4 337.5 6 135 

t5 314.7 6 54 

t6 301.8 7 50 

t7 260.2 5 47 

t8 251.4 5 44 

t9 237.1 5 31 

t10 216.8 5 23 

t11 192.5 5 13 

t12 172.2 5 9 

t13 167.8 4 6 

t14 182.5 4 3 

t15 169.5 4 3 

t16 158.1 3 3 

t17 146.4 4 2 

t18 147.4 4 2 

t19 136.2 4 1 

t20 128.9 3 1 

t21 132.4 4 1 

t22 124.6 4 1 

t23 117.1 4 1 

t24 104.3 2 1 

t25 97.0 2 1 

t26 103.1 2 1 

t27 94.9 2 1 

t28 94.7 2 1 

t29 111.5 3 1 

t30 120.1 3 1 
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Results Analysis 
 

Computation Time 
 

The statistics of the computation time for the three scenarios are displayed in Figure .  

First, the SmartEvac system generates an initial solution using 157 seconds for the 

network with 74 nodes.  Then, the computation time increases as the network size grows 

with new added pickup points and dummy points.  The peak computation times are 171 

seconds for Scenario 2, 178 seconds for Scenario 3(a), and 180 seconds for Scenario 3(b), 

which meets the design standard.  The average computation times are 28.9 seconds, 34.3 

seconds, and 35.9 seconds, in Scenarios 2, 3(a), and 3(b), respectively. In addition, the 

computation time shows a similar tendency for all the three scenarios in that a sharp drop 

occurs from the 5th interval.  The primary reason for this phenomenon is that the network 

size starts to decrease with the completion of part of the pickup requests.  For example, in 

Scenario 2, the network size drops from 76 to 65 in the 5th interval.  Another reason is 

that the initial routes set R for each interval is gradually improved with the SmartEvac 

system running.  A high quality initial routes set R is able to accelerate the convergence 

of the column generation algorithm and thus reduce the computation time (Toth et al., 

2001).  

 
Figure  Computation Time in Scenario 2, Scenario 3(a), and Scenario 3(b) 
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Response to Evacuation Information Updates 
 

The ability that the SmartEvac system responds to the dynamic evacuation information, 

such as new pickup requests, is a primary indicator of the SmartEvac system’s 

applicability in a real time emergency evacuation.  The system response time is defined 

as the interval from a new pickup request coming into the system to the implementation 

of an updated transit vehicle routing plan considering the new pickup request.  It is 

assumed that the arrivals of the new pickup requests are uniformly loaded in the 

emergency evacuation process.  Since the SmartEvac system updates the evacuation 

information at the end of each interval and re-optimizes the transit vehicle routes in the 

next interval, the average response time to a new pickup request is 3t/2 in Scenario 2 with 

a fixed time interval, where t is the length of the interval.  Therefore, the average 

response time is related with the length of time interval that the SmartEvac system needs 

to collect dynamic evacuation information and do re-optimization.  However, because of 

the computational burden at the initial stage of the evacuation process, the fixed interval 

is usually very lengthy; though it becomes redundant when the network size decreases to 

around 60 nodes.  In order to overcome the deficiency with fixed time interval, a dynamic 

time interval is applied in Scenario 2.  

 

The advantage of a dynamic interval is that its length can be dynamically adjusted based 

on its previous interval’s length and computation time. Figure draws a comparison 

of response times between Scenario 2 with a fixed interval and Scenario 2 with a 

dynamic interval. The response time in Scenario 2 with a dynamic interval drops 

continually until the 8th interval, after which the response time fluctuates around 100 

seconds. The average response time with the dynamic interval is 110.8 seconds in 

contrast with 270.2 seconds with the fixed interval. 
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Figure  Response Time in Scenario 2 with Fixed Interval and Dynamic Interval 

 
Comparison with Real Evacuation Results 
 

An effective way to validate the system is to compare with the results from the real 

Hurricane Gustav evacuation.  During the Hurricane Gustav evacuation, CTA employed 

15 transit vehicles and 15 drivers.  There were a total of 15 vehicle-trips in the whole 

process. Table 9 summarized the SmartEvac system’s results and the results from CTA’s 

record. 
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Table 9 Comparison of SmartEvac system’s results and CTA’s record 

 SmartEvac CTA Operations % Saving 

Total Evacuation Time (min) 417.9 637.5 34.4 

Average Response Time (min) 1.4 10 86.0 

No. of Vehicles Used in the Evacuation 7 15 53.3 

  

The results from the SmartEvac system are much more efficient in terms of the total 

evacuation time, average response time, and number of vehicles used in the evacuation.  

The total evacuation time improved 34.4% by the SmartEvac system.  Most importantly, 

the SmartEvac system would respond to a new pickup request under two minutes, while 

the CTA requires 10 minutes on average. There are only seven vehicles used by the 

SmartEvac system, which is much less than the 15 used by CTA. All the above results 

demonstrate that the SmartEvac system significantly outperforms the CTA’s old system. 
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WEB-BASED INTERFACE DEVELOPMENT 
 

The web-based interface design 
 

The Real-Time Transit Vehicle Routing Optimization system should provide an easy and 

fast-access method to transit agencies and bus drivers. One web interface for SmartEvac 

is developed and provided.  The fundamental requirements of any web interface would 

include being user-friendly, being able to be accessed anywhere and at any time, and not 

being computational platform independent (Windows vs. Mac OS).  This service receives 

dynamic evacuation information and traffic information updates and generates the transit 

operation plan in real time.  The website allows end-users access by smart phones, which 

could send and receive important information for transit drivers.  Therefore the web-

based application programming interface (API), web-based server host, website, and 

windows web application are developed and implemented. 

 

The Real-Time Transit Vehicle Routing Optimization web interface would be deployed 

into two network scenarios.  The first is intranet, wherein data between the SmartEvac 

host server and data from transit agencies are exchanged in the transit center.  The second 

is internet, which contains wireless and wired network connections.  The users of the 

internet network would include drivers who have smart phones and transit agencies who 

may work outside.  Figure  displays the system environment of web interface.  It 

clearly shows the two networks for different roles. 

 
Figure  System environment of web-based interface 
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Basing one system requirement, the web interface contains three basic parts: interface, 

server host, and client.  Figure  displays a structural diagram of the web interface.  In 

this diagram, web interface basic components are easily identified and understood. 

 
Figure  Structural Diagram 

Windows Communication Foundation (WCF) technology perfectly meets the 

requirement.  The WCF is a framework for building service-oriented applications.  Using 

WCF, a software engineer could send data from one application to another at any location 

with an Internet connection.  Furthermore, the WCF service as a new network connection 

technology has several advantages for this task.  WCF service could easily configure 

between different programming languages, including C++, C#, or VB.  In addition, WCF 

service is not complicated for deployment and configuration.  In this web interface, we 

developed WCF API, WCF Host, and multiple WCF Clients.  In WCF HOST and API, 

future researchers or developers will not need to modify a majority of source code when 

they need to expand more functions. At WCF Client sides, only few codes could create 

the connections between client application and host.  This is another advantage of WCF. 

 

System Implementation 
 

WCF API       
 

For WCF technology, the basic framework is WCF API, which supports remote call 

functions for host and clients.  Dynamic Link Library (DLL) is chosen for the 

implementation method for WCF API.  It is an interface that contains a number of ports, 

wherein the main functions of these ports are making connections and transferring data 

between hosts and clients.  The source code below shows the basic definition and 

implementation methods in WCF API: 
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        [ServiceContract]  
    public interface class ITransferService 
    { 
 [OperationContract]  
 array<TimeInfo>^ GetServerTimeInfo(); 
 
 [OperationContract]  
 void SetServerTimeInfo(array<TimeInfo>^ serverTimeInfo); 
    } 
The two above methods, GetServerTimeInfo() and SetServerTimeInfo(), are used to 

exchange data based on WCF API. 

 

WCF Host 
 

The WCF Host is developed as a console application in C++, which could reference IBM 

CPLEX Optimizer Solver.  The WCF Host has two components:  the first is loading the 

IBM CPLEX Solver; the second is building and connecting a website server which could 

provide the optimization solutions to clients. Figure shows a screenshot of the WCF 

HOST running time.  The application, called VRP_CPLEX, could generate an 

optimization solution on real-time data. 
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Figure  Screen Shot of WCF Host Application 

The model of this application is the same as the local program explained in previous 

sections.  This application is just the extension of the non-web application.  The WCF 

Host would listen to the client side update and broadcast the latest optimized evacuation 

plan. 

 

WCF Clients 

 

Based on different targets, end-user terminal applications are developed with two cases: 

Web-based and Desktop-based.  The web-based client can be accessed by computers, 
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laptops, and smart phones that have some kind of an Internet browser.  There are no 

limitations of platforms, operation systems, and software versions.  HTTP protocol 

supports this advantage to end-users.  Figure and Figure  show two screen shots 

of the website client.  In Figure 4.1, the website is already prepared to connect the server 

host to receive optimal results. 

 

Figure  Website client is ready for connecting server host 

After clicking the Link button on the website, the result of optimization would be 

provided by the server host and displayed to transit agencies or transit drivers.  Figure 4.2 

displays the optimal results on the website client. 
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Figure  Website client get optimization from server host 

Another client type is the desktop-based Windows form client.  The significant difference 

between them is that the desktop-based client is a standalone software application.  The 

result of this feature is that the Windows form client does not need to connect a website 

server.  The Windows desktop client can connect to host servers directly, which would 

have a higher speed and security than the web-based client. 
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Figure  Windows form client get optimization from server host 

In Figure and Figure , end users can input new nodes into the evacuation plan 

and use the report node button to upload the new node to the optimization host server.  

The optimization host server would update the new evacuation plan in real time.  Both of 

the clients could transfer routing information based on re-optimized solutions. 
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CONCLUSION AND RECOMMENDATIONS 
 

This dissertation developed a SmartEvac system for real time transit vehicle routing 

optimization in an emergency evacuation.  The objective of the SmartEvac system is to 

reduce the total travel time of all transit vehicles.  A column generation based CDVRPPD 

model is integrated into the SmartEvac system.  In a static scheme, the difference 

between the CDVRPPD model and traditional VRP model is that transit vehicles have to 

deliver the evacuees to a shelter instead of the depot where they depart.  Therefore, 

additional constraints are added to the CDVRPPD model for pickup and delivery.  In a 

real-time scheme, the model is reformulated in each interval over the planning horizon.  

Essentially, the dynamic model can be converted from a multi-depot CDVRPPD to a 

single-depot CDVRPPD by introducing dummy pickup points.  The conversion can 

obviously reduce the complexity of the CDVRPPD model.  Furthermore, dynamic 

intervals, whose interval lengths are determined based on the computational performance 

of the last interval, are implemented over the planning horizon.  A case study has 

demonstrated that the response time of the SmartEvac system can be greatly improved 

through the implementation of dynamic intervals. 

 

The CDVRPPD model is formulated in a set covering form.  The set covering model 

typically contains an exponential number of variables, making it impractical to solve 

directly.  Therefore, a column generation method—which progressively expands the 

routes set towards the optimum solution instead of enumerating all the routes—is applied 

to solve the model.  The column generation operation is based on a master-problem and 

sub-problem structure.  The master problem model guides the routes set expansion, while 

the sub-problem model is developed to price out all of the routes necessary to construct 

an optimal solution. In a real-time scheme, the initial routes set is generated by 

integrating a Clarke-Wright saving algorithm with insertion heuristic.  The routes set 

from the last interval is revised to be part of the initial routes set of the current interval.  

The computational results indicate that the average improvement of lower bound reaches 

12.5% on the benchmark problems in comparison with Agarwal, Mathur, and Salkin 

(1989), Bixby (1998), and Hadjiconstantinou, Christofides, and Mingozzi (1995)’s results 
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in the literature.  In addition, the computation time still locates in an affordable range for 

a real-time system when dealing with the clustered benchmark problems with a network 

size of 50–100. The increase of computational time by introducing cycle elimination 

reveals that the system is suitable for a network of a size around 100.  

 

A case study based on the Hurricane Gustav evacuation process is used to demonstrate 

the SmartEvac system in real scenarios.  CORSIM simulations are developed to provide 

data for the SmartEvac system.  Transportation network data in the Gulf Coast area are 

collected in a field survey.  CORSIM RTE is developed as an interface to exchange data 

between CORSIM simulation and the SmartEvac system.  Different scenarios 

corresponding to the different situations that happened in the Hurricane Gustav 

emergency evacuation are proposed to evaluate the performance of the SmartEvac system 

in response to real-time data.  The average processing time is 28.9 seconds, and the 

maximum processing time is 171 seconds (Scenario 2), which demonstrate the 

SmartEvac system’s capability of real-time vehicle routing optimization.  

 

A Windows Communication Foundation based Client/Server SmartEvac is also 

completed within this project.  This enables remote/web deployment of the systems to 

any transit agencies worldwide.  An API is provided to upload their fleet, vehicle, pickup 

locations, any changes in pickup location, and travel time.  The SmartEvac provides 

optimized routing information, directly to drivers and transit agencies. 

 

In summary, the major contribution of this dissertation is the development of a 

SmartEvac system which is able to handle real-time transit vehicle routing in an 

emergency evacuation of 200–250 evacuees.  A traditional VRP model is revised to be 

applicable in a real-time scheme.  The implementation of dynamic intervals could 

effectively reduce the system response time to an emergency.  In addition, the proposed 

2-Cycle elimination algorithm could tight the lower bound without contaminating the 

overall performance of the system.  
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